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There is a nice article by Henry Cohn about why symplectic geometry is a natural setting
for classical mechanics, namely, Hamiltonian mechanics. In the article, he describes why, as
we think about classical mechanics, we want a 2-tensor, why we want it to be alternating,
nondegenerate, and closed. In short, why do we want a symplectic form? I don’t pretend to
add much to his thoughts on the matter. But let’s go in order; I’ll enumerate the questions.

1. Why do we want a 2-tensor?

2. Why do we want it to be nondegenerate?

3. Why do we want it to be alternating?

4. Why do we want it to be closed?

Here is some of my understanding. Let’s first consider a concrete setting. If we have, for
example, a system with three particles, we can model this on M = (R6)3 = R18 with three
position coordinates for each of the particles and similarly for the momentum coordinates. The
dynamics of the system; i.e. how things move about, can be described by considering something
called the Hamiltonian. This is simply a function H : M → R but it’s quite powerful. If we
know all the forces at play, we can encode them into an H which will represent the total energy
of the system.

Okay, so we have this function H but how does it tell us about the dynamics? If a particle
is moving about, it should move about as if it were caught in some vector field. Thus, let us
try to obtain a vector field XH from the Hamiltonian H. What should we expect?

• It’s clear that if we follow the philosophy that H should determine all the dynamics, then
XH should only depend on dH which tells us about the energy. Moreover, energy should
be conserved.

• We also want XH to depend on dH in a linear fashion. This is because Newton’s Laws of
Motion, though often formulated in, say, a set of n 2nd-order differential equations, can
be written as a set of 2n 1st-order differential equations.

Now, we can start answering the questions above.

1. We may ask, “What sort of object takes a 1-form dH and gives us a vector field XH?
The answer is: “A 2-tensor.” Well, to be precise, a tensor field which, for us, should be
a section of Hom(T ∗M,TM); the dual approach is more convenient: Hom(TM, T ∗M) ∼=
T ∗M ⊗ T ∗M . A 2-tensor field is a linear object which will respect our wish for XH to
depend on dH linearly. Let’s call this 2-tensor field ω. Then we may define XH as follows:
ιXω = dH. In other words, ω(X, Y ) = dH(Y ) for all vector fields Y . As an observation,
note that XH vanishes at the critical points of H.
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2. What other properties would we like ω to have? In terms of physics, we’ll like for XH to
always exist uniquely. If this weren’t the case, then we either cannot extract any dynamics
from the Hamiltonian or we extract different dynamics and get conflicting observations.
Nondegeneracy of ω guarantees the existence and uniqueness of XH . This is why we
want ω to be nondegenerate.

To give a more mathematical answer; symplectic geometry has some similarities to Rie-
mannian geometry. If (M, g) is a Riemannian manifold, then since we require g to be
nondegenerate, we have a canonical way of identifying TM and T ∗M . Similarly, when we
have ω as a nondegenerate 2-form on a manifold N , we have a canonical way of identifying
TN with T ∗N . This seems like a natural feature to consider, especially given the success
of Riemannian geometry in physics.

3. Now, we incorporate one of the laws of classical physics: conservation of energy. What
does this translate to in our setting? Conservation of energy means that H is constant
along the trajectories of XH which translates to dH(X) = 0. In other words, we want
ω(X,X) = dH(X) = 0. Thus, when ω is alternating, it fits the bill. Hence, we see that
the 2-tensor field we want is actually a section of

∧2 T ∗M ; i.e. ω is a differential 2-form.

Note that the conservation of energy condition is precisely saying that XH preserves the
level sets of H as XH is tangent to the level sets. Or more precisely, the flow generated
by XH is a family of diffeomorphisms ϕt : M →M which preserve the energy levels (level
sets) of H.

Compare this to the definition of the gradient of a function H; if we choose a compatible
almost complex structure J , then we’re able to define a Riemannian metric g(·, ·) =
ω(·, J ·). Then ∇H is defined as the vector field satisfying g(∇H,Y ) = dH(Y ) for all Y .
Thus, ∇H would be orthogonal to the level sets of H.

4. In classical mechanics, one of the guiding principles is that we should be able to say how
a system is behaving at any given time, whether in the past or future. Thus, here, the
natural thing to do if we’re interested in what happens at time t is to use a pullback:
ϕ∗tω. However, ω should be time independent since the laws of classical physics should
not depend on time. So we really would like ϕ∗tω = ω. What conditions should ω satisfy
to guanrantee this wish? The claim is that ω should be closed: dω = 0.

Well, when t = 0, ϕt = id so ϕ∗0ω = ω. If we can show the derivative with respect to t is
zero when dω = 0, then we will have shown ϕ∗tω = ω. Now,

d

dt
ϕ∗tω = lim

h→0

ϕ∗t+hω − ϕ∗tω
h

= ϕ∗t lim
h→0

ϕ∗hω − ω
h

= ϕ∗tLXω.

Here, LXω is the Lie derivative. But Cartan has a nice formula for the Lie derivative
of differential forms: LXω = dιXω + ιXdω. By definition, the first term is d(dH) = 0.
If dω = 0, then the second term is also zero. Thus, dω = 0 precisely gives us time-
independence.

To summarize briefly the responses to the four questions:

1. We take a tensor field because we want to obtain a vector field from dH.

2. Nondegeneracy gives us the existence of a unique vector field which tells us all the
dynamics of the system.

3. An alternating tensor gives us conservation of energy.
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4. A closed 2-form says the laws of physics are time independent.

Hopefully that convinces you why the definition of a symplectic form naturally arises from
physics. But one can ask some further questions.

1. What does symplectic area mean physically?

2. Why should physicists care about symplectic manifolds which are not cotangent bundles?

3. What do symplectomorphisms mean in physics?

I will do my best to give some kind of answer.

1. Let’s take one of the simplest examples of a symplectic manifold: (T ∗R, dλ); we may
think of this as R2 where ω = dλ = d(p dq) = dp ∧ dq. Since this is an exact form, if we
have some region D with boundary given by a smooth simple closed curve γ, then∫

D

ω =

∫
γ

λ

by Stokes’ theorem. What does the integral on the right mean? The action functional
of a Hamiltonian system is typically given as a functional on paths with fixed endpoints
of some phase space. It is able to encode all the physical information about the equations
of motion for a given classical system. So if we’re looking at loops and the Hamiltonian
is given as H, then the action is:

AH(γ) =

∫
γ

λ−
∫ 1

0

H(γ(t)) dt.

Well, physicists often take the negative of this. But regardless, the symplectic area of
D is the action of γ when H ≡ 0. The paths which minimize the action functional are
supposed to be the paths that the physical system actually takes. This is the Principle
of Least Action.

If we take the unit disk in R2, the unit circle represents a path which, I believe, corresponds
to the motion of a harmonic oscillator. What does the disk itself mean? I suppose we can
imagine it as, perhaps, all the possible configurations for an oscillating spring that loses
energy overtime (which is compact). So, the path in the phase space will look like some
spiral towards the origin.

2. Take, for example, the classical system of the sun, earth, and moon. We can describe
their position and momentum in R18 = T ∗R9. However, we’re mostly interested in their
relative positions to each other so we may quotient by some symmetries, namely that of
translations. Thus, we will obtain T 18, the 18-torus. The symplectic form on R18 descends
since it is translation invariant; however, it is no longer exact. On the other hand, it is
still locally exact. So a symplectic manifold, while it might not globally be some phase
space, it is locally like some phase space.

3. I don’t know how to give a physical interpretation of symplectomorphisms which are not
Hamiltonian diffeomorphisms. An easy example of such a symplectomorphism is simply
translation on the 2-torus. If we have a Hamiltonian diffeomorphism ϕ := ϕ1 : M → M ,
we would like ϕ∗ω = ω because the laws of physics should be the same over time. However,
if we consider all manners of maps which preserve ω, I don’t know what the physical
interpretation is.
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