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1 Measures

The concept of measures has roots in geometry where area and volume are discussed. We would
like to find a function µ : X → R such that:

1. If E1, E2, ... is a finite or infinite sequence of disjoint sets, then

µ(
∞⋃
n=1

En) =
∞∑
n=1

µ(En).

2. If E is congruent to F (E can be transformed to F via translations, rotations, and
reflections), then µ(E) = µ(F ).

3. µ(Q) = 1 where Q is the unit cube in Rn.

1.1 Non-Measurable Sets

However, there is no such measure µ. To see this, let n = 1 and define the equivalence relation
on [0, 1): x ∼ y iff x − y ∈ Q. Let N ⊂ [0, 1) that contains precisely one member of each
equivalence class (invoke Axiom of Choice). Now let R = Q ∩ [0, 1) and for each r ∈ R, let

Nr = {x+ r : x ∈ N ∩ [0, 1− r)} ∪ {x+ r − 1 : x ∈ N ∩ [1− r, 1)}.
In English, we create Nr by shifting N to the right by r units and then the part that sticks

out beyond [0, 1), we shift left by one unit. Then Nr ⊂ [0, 1) and every x ∈ [0, 1) belongs to
precisely one Nr. If y ∈ N and y ∼ x, then x ∈ Nr where r = x− y if x ≥ y or r = x− y + 1
if x < y. Furthermore, Nr ∩Ns = ∅ because if there were an element x in the intersetion, this
would mean that we have two distinct elements of N belonging to the same equivalence class
which is a contradiction by how we constructed N .

Suppose then that µ : P(R)→ [0,∞] satisfies (1), (2), and (3). By (1) and (2),

µ(N) = µ(N ∩ [0, 1− r)) + µ(N ∩ [1− r, 1) = µ(Nr)

for any r ∈ R. Since R is countable and [0, 1) is the disjoint union of the Nr’s,

µ([0, 1)) =
∑
r∈R

µ(Nr) =
∞∑
n=1

µ(N)

by (1). But (3) requires µ([0, 1)) = 1. If µ(N) > 0, then the RHS is ∞. If µ(N) = 0, then
the RHS is 0. In either case, we have 1 =∞ or 1 = 0, both leading to contradictions.
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1.2 σ-Algebras

For the following definitions, let X be a nonempty set.

Definition 1.1. An algebra of sets on X is a nonempty collection A of subsets of X that is
closed under finite unions and complements. Observe that

n⋂
j=1

Ej = (
n⋃
j=1

Ec
j )
c

which means that it is also closed under finite intersections.

Note that ifA is an algebra, it contains ∅, X because if E ∈ A, thenX = E∪Ec,∅ = E∩Ec.

Definition 1.2. A σ-algebra is an algebra closed under countable unions. By a similar ob-
servation from above, a σ-algebra is closed under countable intersections.

Lemma 1.3. An algebra A is a σ-algebra if it is closed under countable disjoint unions.

Proof. Suppose {Ej}∞ ⊂ A. Set

Fk = Ek \ [
k−1⋃

Ej] = Ek ∩ [
k−1⋃

Ej]
c.

Then the Fk’s belong to A and are disjoint while
⋃∞Ej =

⋃∞ Fk.
This trick of creating a disjoint sequence of sets is good to remember.

The intersection of a family of σ-algebras is a σ-algebra. Furthermore, for E ⊂ P(X), there
is a unique smallest σ-algebra M(E) containing E ; M(E) is the intersection of all σ-algebras
containing E . We say that M(E) is generated by E .

Definition 1.4. Let X be a topological space and T ⊂ P(X) the topology of X. Then M(T )
is the σ-algebra generated by open (or equivalently, closed) sets of X. This σ-algebra is called
the Borel σ-algebra on X and is denoted BX .

Proposition 1.5. BR is generated by any one of the following:

1. the open intervals of the form (a, b),

2. the closed intervals of the form [a, b],

3. the half-open intervals of the form (a, b] or [a, b),

4. the open rays of the form (a,∞) or (−∞, a),

5. the closed rays of the form [a,∞) or (−∞, a].

Definition 1.6. Let {Xα}α∈A be an indexed collection of nonempty sets, X =
∏

α∈AXα, and
πα : X → Xα the coordinate maps. If Mα is a σ-algebraon Xα for each α, the product
σ-algebra on X is the σ-algebra generated by

{π−1α (Eα : Eα ∈Mα, α ∈ A)}.

We denote it
⊗

α∈AMα.

Look at p. 23 for some propositions about
⊗

α∈AMα.

Definition 1.7. An elementary family is a collection E of subsets of X such that
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• ∅ ∈ E,

• if E,F ∈ E, then E ∩ F ∈ E,

• if E ∈ E then Ec is a finite disjoint union of members of E.

Proposition 1.8. If E is an elementary family, the collection A of finite disjoint unions of
members of E is an algebra.

1.3 Measures

Definition 1.9. A measure on M is a function µ :M→ [0,∞] such that:

1. µ(∅) = 0,

2. (countable additivity) if {Ej}∞ is a sequence of disjoint sets in M, then µ(
⋃∞Ej) =∑∞ µ(Ej).

Here are some definitions about the “size” of µ.

Definition 1.10.

1. If µ(X) <∞, µ is called finite. Note that this implies µ(E) <∞ for all E ∈M.

2. If X =
⋃∞Ej where Ej ∈M and µ(Ej) <∞ for all j, then µ is said to be σ-finite.

3. If for each E ∈M with µ(E) =∞, there exists F ∈M with F ⊂ E and 0 < µ(F ) <∞,
µ is called semifinite.

The counting measure is not σ-finite. See p. 25 for other examples of measures.

Theorem 1.11. Let (X,M, µ) be a measure space.

1. (Monotonicity) If E,F ∈M and E ⊂ F , then µ(E) ≤ µ(F ).

2. (Subadditivity) If {Ej}∞ ⊂M, then µ(
⋃∞Ej) ≤∑∞ µ(Ej).

3. (Continuity from Below) If {Ej}∞ ⊂M and E1 ⊂ E2 ⊂ ..., then µ(
⋃∞Ej) = limj→∞ µ(Ej).

4. (Continuity from Above) If {Ej}∞ ⊂ M and E1 ⊃ E2 ⊃ ..., and µ(E1) < ∞, then
µ(
⋂∞Ej) = limj→∞ µ(Ej).

Definition 1.12. A set E with measure zero is called a null set. If a statement about points
x ∈ X is true for all x except for x in some null set, we say it is true almost everywhere
(abbreviate a.e.). If F ⊂ E and µ(E) = 0, we say that M is complete if and only if F ∈M.

The next theorem shows that we needn’t worry too much about incomplete spaces.

Theorem 1.13. Suppose that (X,M, µ) is a measure space. Let N = {N ∈ M : µ(N) = 0}
and M = {E ∩ F : E ∈ M;F ⊂ N where N ∈ N}. Then M is a σ-algebra and there is a
unique extension µ of µ to a complete measure on M.
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1.4 Outer Measures

The concept of outer measure deals with approximating something from above; e.g. estimating
the area of a shape by calculating the area of rectangles covering the shape. The area of the
rectangles are easy to calculate and on a first pass, we have a rough approximation. By letting
the grid of rectangles get finer, the approximation improves.

Definition 1.14. An outer measure on a nonempty set X is a function µ∗ : P(X)→ [0,∞]
that satisfies

• µ∗(∅) = 0,

• µ∗(A) ≤ µ∗(B) if A ⊂ B,

• µ∗(
⋃∞Aj) ≤∑∞ µ∗(Aj).

Proposition 1.15. Let E ⊂ P(X) and ρ : E → [0,∞] be such that ∅ ∈ E and ρ(∅) = 0. For
any A ⊂ X, define

µ∗(A) = inf

{
∞∑
ρ(Ej) : Ej ∈ E and A ⊂

∞⋃
Ej

}
.

Then µ∗ is an outer measure.

Definition 1.16. If µ∗ is an outer measure on X, a set A ⊂ X is called µ∗-measurable if

µ∗(E) = µ∗(E ∩ A) + µ∗(E ∩ Ac) for all E ⊂ X.

If A ⊂ E, and E is “well-behaved, then we may think of µ∗(A) = µ∗(E ∩ A) as the outer
measure of A as it gives a larger value for what E∩A is. The inner measure is µ∗(E)−µ∗(E∩Ac)
because µ∗(E ∩ Ac) overshoots on giving an estimate for the measure of what is between E
and Ac. Then, subtracting an overshoot gives a smaller-than-actual value. To say something
is µ∗-measurable is to say that µ∗(A) = µ∗(E ∩ A) = µ∗(E)− µ∗(E ∩ Ac).

Theorem 1.17 (Carathéodory’s Theorem, p. 29). If µ∗ is an outer measure on X, the
collection M of µ∗-measurable sets is a σ-algebra, and the restriction of µ∗ to M is a complete
measure.

One application of Carath éodory’s Theorem is extending measures from algebras to σ-algebras.

Definition 1.18. If A ⊂ P(X) is an algebra, a function µ0 : A → [0,∞] is a premeasure if

1. µ0(∅) = 0,

2. if {Aj}∞ is a sequence of disjoint sets in A such that
⋃∞Aj ∈ A, then µ0(

⋃∞Aj) =∑∞ µ0(Aj).

Proposition 1.19. If µ0 is a premeasure on A and µ∗ is defined as

µ∗(E) = inf

{
∞∑
µ0(Aj) : Aj ∈ A, E ⊂

∞⋃
Aj

}
, (1.1)

then

1. µ∗|A = µ0,

2. every set in A is µ∗-measurable.
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Theorem 1.20. Let A ⊂ P(X) be an algebra, µ0 a premeasure on A, and M the σ-algebra
generated by A. There exists a measure µ on M such that µ|A = µ0 — namely, µ = µ∗|M
where µ∗ is given by (1.1), If ν is another measure on M that extends µ0, then ν(E) ≤ µ(E)
for all E ∈M, with equality when µ(E) <∞. If µ0 is σ-finite, then µ is the unique extension
of µ0 to a measure on M.

The proof of this theorem uses Carathéodory’s Theorem.

1.5 Borel Measures on the Real Line

We want to build a measure on BR from an increasing, right continuous function F . Such a
measure is called a Borel measure on R. When F (x) = x, we’ll have the usual “length”
measure.

Proposition 1.21. Let F : R→ R be increasing and right continuous; i.e. limt→x+ f(t) = f(x).
If (aj, bj] (j = 1, ..., n) are disjoint half-open intervals (h-intervals), let

µ0

(
n⋃

(aj, bj]

)
=

n∑
[F (bj)− F (aj)],

and let µ0(∅) = 0. Then µ0 is a premeasure on the algebra A.

Theorem 1.22. If F : R → R is any increasing, right continuous function, there is a unique
Borel measure µF on R such that µF ((a, b]) = F (b) − F (a) for all a, b. If G is another such
function, we have µF = µG if and only if F −G is constant. Conversely, if µ is a Borel measure
on R that is finite on all bounded Borel sets and we define

F (x) =


µ((0, x]) x > 0,

0 x = 0

−µ((x, 0]) x < 0,

then F is increasing and right continuous, and µ = µF .

We may obtain a complete measure which we usually also call µF from F . µF has a strictly
larger domain than BR and is called the Lebesgue-Stieltjes measure associated to F .

Theorem 1.23. If E ∈M, then

µ(E) = inf{µ(U) : E ⊂ U and U is open}
= sup{µ(K) : K ⊂ E and K is compact}

See pp. 36-37 for some more theorems and propositions. The next theorem says that the
Lebesgue measure (µF where F (x) = x), denoted m, is invariant under translations and
predictable under dilations.

Theorem 1.24. If E ∈ L, then E + s := {x+ s : x ∈ E} ∈ L and rE := {rx : x ∈ E} ∈ L for
all s, r ∈ R. Moreover, m(E + s) = m(E) and m(rE) = |r|m(E).

Example 1.25. Let {r∞j } be an enumeration of the rationals in [0, 1] and let ε > 0. Let Ij be
the open interval centered at rj of length e2−j. Then the set U = (0, 1)∩

⋃∞ Ij is open and dense
in [0, 1] but m(U) ≤

∑∞ ε2−j = ε. Its complement K = [0, 1] \ U is closed and nowhere dense
but m(K) ≥ 1 − ε. Hence, sets which are topologically “large” can be measure-theoretically
small, and vice versa. However, nonempty open sets cannot have Lebesgue measure zero.
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Example 1.26. The Cantor set C is a standard example of an uncountable set with measure
zero. it is also compact, nowhere dense (the closure has empty interior), and totally discon-
nected.

Example 1.27. Suppose x ∈ C so that x =
∑∞ aj3−j where aj = 0 or 2 for all j. Let

g(x) =
∑∞ bj2−j where bj = aj/2. Then g maps C to [0, 1]. We may extend the g to a function

f so that it is constant on each interval missing from C. f is continuous and called the Cantor
function.

Not every Lebesgue measurable set is Borel. See exercise 9 in Chapter 2 (homework).

2 Integration

2.1 Measurable Functions

We consider a definition similar to that of continuous functions.

Definition 2.1. If (X,M), (Y,N ) are measurable spaces, a mapping f : X → Y is called
(M,N )-measurable if f−1(E) ∈M for all E ∈ N .

Since Borel sets are generated from the topology of a space, continuous functions f : X → Y
on generic topological spaces X, Y are automatically (BX ,BY ) measurable. For the rest of the
chapter, Folland, when referring to measurable functions, always means in the Borel sense;
particularl with BR or BC as the σ-algebras of the range space. So we’ll use this definition for
measurable.

Warning: Something can be Lebesgue measurable but not Borel measurable. If f, g : R→ R
are Lebesgue measurable, it does not follow that f ◦ g is Lebesgue measurable, even if g is
continuous. If E ⊂ BR, we have f−1(E) ∈ L but unless f−1(E) ∈ BR, there is no guarantee
g−1(f−1(E)) will be in L. If f is Borel measurable, then f ◦ g is Lebesgue or Borel measurable
whenever g is.

Proposition 2.2. If N is generated by E, then f : X → Y is (M,N )-measurable if and only
if f−1(E) ∈M for all E ∈ E.

Proposition 1.5 gives us some ways of generating BR. The next proposition shows some
equivalent statements about real-valued measurable functions.

Proposition 2.3. If (x,M) is a measurable space and f : X → R, the following are equivalent:

1. f is M-measurable.

2. f−1(a,∞) ∈M for all a ∈ R.

3. f−1[a,∞) ∈M for all a ∈ R.

4. f−1(−∞, a) ∈M for all a ∈ R.

5. f−1(−∞, a] ∈M for all a ∈ R.

Proposition 2.4. If {fj} is a sequence of R-valued measurable functions on (X,M), then the
functions

g1(x) = sup
j
fj(x), g3(x) = lim

j→∞
sup fj(x),

g2(x) = inf
j
fj(x), g4(x) = lim

j→∞
inf fj(x)

are all measurable. If f(x) = limj→∞ fj(x) exists for every x ∈ X, then f is measurable.
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Definition 2.5. The characteristic function χE is defined by

χE(x) =

{
1 x ∈ E,
0 x /∈ E.

χE is measurable if and only if E ∈M.

Definition 2.6. A simple function on X is a finite linear combination, with complex coeffi-
cients, of characteristic functions on sets in M. Equivalently, f : X → C is simple if and only
if f is measurable and the range of f is finite.

f =
n∑
zjχEj

.

Theorem 2.7. Let (X,M) be a measurable space.

1. If f : X → [0,∞] is measurable, there is a sequence {φn} of simple functions such that
0 ≤ φ1 ≤ φ2 ≤ ... ≤ f , φn → f pointwise, and φn → f uniformly on any set on which f
is bounded.

2. If f : X → C is measurable, there is a sequence {φn} of simple functions such that
0 ≤ |φ1| ≤ |φ2| ≤ ... ≤ |f |, φn → f pointwise, and φn → f uniformly on any set on which
f is bounded.

2.2 Integration of Nonnegative Functions

Definition 2.8. L+ = {f : X → [0,∞] : f is measurable}

Definition 2.9. If φ ∈ L+ and has representation φ =
∑n ajχEj

, then we define the integral
of φ with respect to µ by ∫

φ dµ =
n∑
ajµ(Ej).

We let 0 · ∞ = 0 and allow
∫
φ =∞.

Definition 2.10. Extending to all functions f ∈ L+,∫
f dµ = sup

{∫
φ dµ : 0 ≤ φ ≤ f, φ simple

}
.

Theorem 2.11 (The Monotone Convergence Theorem). If {fn} is a sequence in L+ such
that fj ≤ fj+1 for all j, and f = limn→∞ fn(= supn fn), then

∫
f = limn→∞

∫
fn.

In general, if the condition fj ≤ fj+1 isn’t met, then the theorem may fail. The next example
demonstrates this:

Example 2.12. Let fn(x) = 1 for x ≥ n and 0 elsewhere. It is true that {fn} ⊂ L+ but
fn ≥ fn+1 for all n. fn → f = 0 but

∫
fn =∞ for all n and so limn→∞

∫
fn =∞ while

∫
f = 0.

Next, we give an application of the MCT to a theorem which gives us conditions for when
we may interchange

∫
and

∑
while mantaining equality. See proof on p. 51.

Theorem 2.13. If {fn} is a finite or infinite sequence in L+ and f =
∑

n fn, then
∫
f =∑

n

∫
fn.
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Proposition 2.14. If f ∈ L+, then
∫
f = 0 if and only if f = 0 a.e.

Corollary 2.15. If {fn} ⊂ L+, f ∈ L+, fn ≤ fn+1, and fn → f a.e., then
∫
f = lim

∫
fn.

The next lemma is used often:

Lemma 2.16 (Fatou’s Lemma). If {fn} is any sequence in L+, then∫
lim inf fn ≤ lim inf

∫
fn.

To remember which way the inequality goes, remember that IL (integrate then limit) comes
before LI (limit then integrate), alphabetically. Also, remember this example:

Example 2.17. Let f2k = χ[−1,0] and f2k+1 = χ[0,1]. Then lim inf fn = 0 but
∫
fn = 1 for all

n. Thus, 0 =
∫

lim inf fn < lim inf
∫
fn = 1. Similarly, if we let fn = χ[n,n+1], we have a similar

strict inequality.

2.3 Integration of Complex Functions

We may extend the definition of integral from the previous section to all real-valued measurable
functions f . Let f+ be the positive part of f :

f+(x) =

{
f(x), f(x) ≥ 0;

0, f(x) < 0.

Let f− be the negative part:

f−(x) =

{
−f(x), f(x) ≤ 0;

0, f(x) > 0.

Note that f− is a positive function. Then f = f+ − f−. We say that f is integrable if
and only if

∫
f+ <∞ and

∫
f− <∞ if and only if

∫
|f | <∞. Integrable functions live in the

vector space L1; integration is a linear functional on L1.

Example 2.18. f(x) = 1
x

sinx is not Lebesgue integrable because
∫
[0,∞)
|f | = ∞ (behaves

roughly like
∑∞ 1/n). However, f is improperly Riemann integrable;

∫∞
0
f dx = π/2.

Proposition 2.19. If f ∈ L1, then |
∫
f | ≤

∫
|f |.

For the purposes of having a metric which makes sense on L1, we take equivalence classes
of functions where f ∼ g ⇔ f = g a.e. The reason for this is because the integral of f and g
are the same if they equal a.e. Then, the distance between them is well-defined.

Theorem 2.20 (The Dominated Convergence Theorem). Let {fn} be a sequence in L1

such that

1. fn → f a.e.

2. There exists a nonnegative g ∈ L1 such that |fn| ≤ g a.e. for all n.

Then f ∈ L1 and
∫
f = limn→∞

∫
fn.

Thus, g and −g bound all the fn.
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Example 2.21. Consider the sliding block scenario: fn(x) equals 1 on [n, n+1] and 0 elsewhere.
Then fn → f = 0 pointwise. It is bounded above by nonegative g which equals 1 on [0,∞) and
0 elsewhere; so |fn| ≤ g for all n. However, g /∈ L1. Thus, 0 =

∫
f 6= lim

∫
fn = 1.

The next theorem gives us conditions for interchanging
∫

and
∑

, similar to Theorem 2.13.
However, note that we gain some more information when we assume the sequence is in L1.

Theorem 2.22. Suppose that {fj} is a sequence in L1 such that
∑∞ ∫ |fj| <∞. Then

∑∞ fj
converges a.e. to a function in L1 and

∫ ∑∞ fj =
∑∞ ∫ fj.

Theorem 2.23. If f ∈ L1 and ε > 0, there is an integrable simple function φ =
∑
ajχEj

such
that

∫
|f − φ|dµ < ε; i.e. the integrable simple functions are dense in L1 in the L1 metric.

If µ is a Lebesgue-Stieljes measure on R (see Theorem 1.22), the sets Ej in the definition of
φ can be taken to be finite unions of open intervals; moreover, there is a continuous function g
that vanishes outside a bounded interval such that

∫
|f − g|dµ < ε.

Theorem 2.24. Suppose that f : X × [a, b] → C and that ft : X → C is integrable for each
t ∈ [a, b]. Let F (t) =

∫
X
f(x, t) dµ(x).

1. Suppose that there exists g ∈ L1 such that |f(x, t)| ≤ g(x) for all x, t. If limt→t0 f(x, t) =
f(x, t0) for every x, then limt→t0 F (t) = F (t0). In particular, if f(x, ·) is continuous for
each x, then F is continuous.

2. Suppose that ∂f/∂t exists and there is a g ∈ L1 such that |∂f/∂t)(x, t)| ≤ g(x) for all
x, t. Then F is differentiable and F ′(t) =

∫
(∂f/∂t)(x, t) dµ(x).

The next theorem compares Riemann integrals to Lebesgue integrals.

Theorem 2.25. Let f be a bounded real-valued function on [a, b].

1. If f is Riemann integrable, then f is Lebesgue measurable (and hence integrable on [a,b]

since it is bounded), and
∫ b
a
f(x) dx =

∫
[a,b]

f dm.

2. f is Riemann integrable if and only if the set of points at which f is discontinuous has
Lebesgue measure zero.

2.4 Modes of Convergence

Definition 2.26. fn → f in L1 means
∫
|fn − f | → 0 pointwise.

Definition 2.27. We say {fn} is Cauchy in measure if for every ε > 0,

µ({x : |fn(x)− fm(x)| ≥ ε})→ 0 as m,n→∞.

{fn} converges in measure to f if for every ε > 0,

µ({x : |fn(x)− f(x)| ≥ ε})→ 0 as n→∞.

Definition 2.28. fn → f almost uniformly means that for every ε > 0 there exists a set E
such that µ(Ec) < ε and fn → f uniformly on E.

The following functions will be useful as counterexamples:

Example 2.29. These examples are crucial.
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1. fn = n−1χ(0,n).

2. fn = χ(n,n+1).

3. fn = nχ[0,1/n].

4. f1 = χ[0,1], f2 = χ[0,1/2], f3 = χ[1/2,1], f4 = χ[0,1/4], f5 = χ[1/4,1/2], f6 = χ[1/2,3/4], f7 = χ[3/4,1],
and in general, fn = χ[j/2k,(j+1)/2k] where n = 2k + j with 0 ≤ j < 2k.

5. f2k+1 = χ[0,1], f2k = χ[−1,0].

In (1),(2), (3), fn → 0 uniformly, pointwise, and a.e., respectively, but none converges to 0 in
L1 because for each of them,

∫
|fn| =

∫
fn = 1.

In (4), fn → 0 in L1 since
∫
|fn| = 2−k for 2k ≤ n < 2k+1, but fn(x) does not converge

for any x ∈ [0, 1] because there are, for infinitey many n, fn(x) = 0 and infinitely many n for
which fn(x) = 1.

In (3), the sequence converges to f = 0 in measure since the intervals on which fn is nonzero
gets smaller. However, limn→∞

∫
|fn − f | = limn→∞

∫
fn = 1 6= 0. So (3) is also an example of

convergence in measure but not in L1.
In (5), there is a subsequence on which it converges everywhere. However, the sequence

itself does not converge in any mode.

Lemma 2.30. If fn → f a.e. and |fn| ≤ g ∈ L1, for all n, then fn → f in L1 (by the
dominated convergence theorem).

Proposition 2.31. If fn → f in L1, then fn → f in measure.

Theorem 2.32. Suppose that {fn} is Cauchy in measure. Then there is a measurable function
f such that fn → f in measure, and there is a subsequence {fnj

} that converges to f a.e.
Moreover, if also fn → g in measure, then g = f a.e.

Proposition 2.33. If fn → f in L1, there is a subsequence {fnj
} such that fnj

→ f .

Theorem 2.34 (Egoroff’s Theorem). Suppose that µ(X) < ∞, and f1, f2, ... and f are
measurable complex-valued functions on X such that fn → f a.e. Then for every ε > 0 there
exists E ⊂ X such that µ(E) < ε and fn → f uniformly on Ec.

Proposition 2.35. Almost uniform convergence implies convergence a.e. and convergence in
measure.

Here is a useful theorem (proved in homework 5):

Theorem 2.36 (Lusin’s Theorem). If f : [a, b]→ C is Lebesgue measurable and ε > 0, then
there is a compact set E ⊂ [a, b] such that µ(Ec) < ε and f |E is continuous.

Below is a summarizing diagram which shows how the diffrent modes imply each other. The
dashed lines show that there exists a subsequence which has the desired convergence. Further-
more, we have convergence in measure if and only if we have Cauchy in measure (Theorem
2.32).

Fig. 1: Modes of Convergence in General Measure Spaces
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For finite measure spaces X (i.e. µ(X) <∞), we have a few more relations; note that AE
⇒ AU by Egoroff’s Theorem.

Fig. 2: Modes of Convergence in Finite Measure Spaces

2.5 Product Measures

Definition 2.37. A measurable rectangle is a set of the form A× B where A ∈ M, B ∈ N .
It is the case that (A×B)∩ (E×F ) = (A∩E)× (B∩F ) and (A×B)c = (X×Bc)∪ (Ac×B).
Thus, the collection of finite disjoint unions of rectangles A is an algebra which generates the
σ-algebra M⊗N .

If E ∈ A is a disjoint union of rectangles A1 × B1, ..., An × Bn, we’ll let π be a map such
that

π(E) =
n∑
µ(Aj)ν(Bj).

By Theorem 1.20, π is a premeasure and generates an outer measure on X × Y whose
restriction toM×N is a measure that extends π. We call this measure µ× ν. If µ, ν are both
σ-finite, then so is µ× ν and it is the unique measure such that µ× ν(A×B) = µ(A)ν(B). We
can do this for any finite number of factors and if all the measures in the factors are σ-finite,
then associativity holds; i.e. (M1 ⊗M2)⊗M3 =M1 ⊗ (M2 ⊗M3).

Definition 2.38. If E ⊂ X × Y , for x ∈ X, y ∈ T , we define x-section Ex and y-section
Ey of E by

Ex = {y ∈ Y : (x, y) ∈ E}, Ey = {x ∈ X : (x, y) ∈ E}.

Definition 2.39. If f is a function on X × Y , we define the x-section fx and y-section f y

of f by

fx(y) = f y(x) = f(x, y).

Definition 2.40. A monotone class on a space X is a subset C ⊂ P(X) that is closed
under countable increasing unions and countable decreasing intersections; i.e. if Ej ∈ C and
E1 ⊂ E2 ⊂ ... then ∪Ej ∈ C and likewise for intersections.

Every σ-algebra is a monotone class and the intersection of monotone classes is a monotone
class. Then, there is a unique smallest monotone class containing E ⊂ P(X).

Lemma 2.41 (The Monotone Class Lemma). If A is an algebra of subsets of X, then the
monotone class C generated by A coincides with the σ-algebra M generated by A.

Theorem 2.42. Suppose (X,M, µ), (Y,N , ν) are σ-finite measure spaces. If E ∈ M ⊗ N ,
then the functions x 7→ ν(Ex) and y 7→ µ(Ey) are measurable on X and Y , respectively, and

µ× ν(E) =

∫
ν(Ex) dµ(x) =

∫
µ(Ey) dν(y).

11



Theorem 2.43 (The Fubini-Tonelli Theorem). Suppose that (X,M, µ), (Y,N , ν) are σ-
finite measure spaces.

1. (Tonelli) If f ∈ L+(X × Y ), then the functions g(x) =
∫
fx dν and h(y) =

∫
f y dµ are in

L+(X) and L+(Y ), respectively and

∫
f d(µ× ν) =

∫ [∫
f(x, y) dν(y)

]
dµ(x)

=

∫ [∫
f(x, y) dµ(x)

]
dν(y).

2. (Fubini) If f ∈ L+(µ × ν), then fx ∈ L1(ν) for almost every x ∈ X and f y ∈ L1(µ) for
almost every y ∈ Y . Moreover, the almost everywhere defined functions g(x) =

∫
fx dν

and h(y) =
∫
f y dµ are in L1(µ) and L1(ν), respectively and the integrals in (a) hold.

2.6 Further Examples for Chapters 1 and 2

Example 2.44. The counting measure is a translation invariant measure on R that is not a
multiple of Lebesgue measure.

Example 2.45. A set E ⊂ R of finite Lebesgue measure, m(E) <∞ so that m(E ∩ I) > 0 for
every non-empty open interval I ⊂ R.

Enumerate the rationals {rn} and take E =
⋃∞
n=1(rn− 1/2n+1, rn + 1/2n+1). Then m(E) ≤∑∞

n=1 1/2n = 1 <∞. But every open interval I contains a rational since Q is dense and thus,
I ∩ E contains an interval so m(I ∩ E) > 0.

Example 2.46. A Lebesgue integrable function f on R such that f 2 is not integrable.

f(x) =

{
x−1/2, 0 ≤ x ≤ 1

0, else
.

Then
∫
f = 2. However, lima→0

∫ 1

a
f 2 =∞.

Example 2.47. A non-measurable function f such that f 2 is measurable.
Let N be a non-measurable set. Let f = χR\N − χN . Thus, f is 1 or -1 everywhere. Since

N is non-measurable, χN is non-measurable, forcing f to be non-measurable. However, f 2 = 1
everywhere; this is a continuous and thus measurable function.

Example 2.48. A Lebesgue integrable function on R that is unbounded on every open interval.
Enumerate the rationals as {rn}. Let f(x) = x−1/2 for x ≥ 0 and 0 elsewhere. Let

g =
∑∞ f(x − rn)/2n. Then by Exercise 2.25 (see homework 5), g ∈ L1(m) but is discontin-

uous everywhere and unbounded on every set, even after modification on a Lebesgue null set.
Furthermore, g <∞ and g2 <∞ but g2 is not integrable on any interval.

Example 2.49. Consider E = {(−n, n) : n ∈ N}. This is its own Monotone class but is not
closed under complements. Thus, it is an example of a family not generated by an algebra and
thus, not the same as a σ-algebra.

3 Signed Measures and Differentiation

The principal theme of this chapter is the concept of differentiating a measure ν with respect
to another measure µ on the same σ-algebra.

12



3.1 Signed Measures

Definition 3.1. Let (X,M) be a measurable space. A signed measure on (X,M) is a
function ν :M→ [−∞,∞] such that

• ν(∅) = 0;

• ν assumes at most one of the values ±∞.

• If {Ej} is a sequence of disjoint sets in M, then ν(
⋃∞

1 Ej) =
∑∞

1 ν(Ej), where the sum
converges absolutely if ν(

⋃∞
1 Ej) is finite.

If ν is a signed measure on (X,M), a set E ∈M is called positive (resp. negative, null) for
ν if ν(F ) ≥ 0 (resp. ν(F ) ≤ 0, ν(F ) = 0) for all F ∈M such that F ⊂ E.

Example 3.2. We will see later that the two examples below are in fact, exhaustive. Every
signed measure can be represented in one of two ways.

• If µ1, µ2 are positive measures on M and at least one of them is finite, then ν = µ1 − µ2

is a signed measure.

• If µ is a measure onM and f : X → [−∞,∞] is a measurable function such that a tleast
one of

∫
f+ dµ and

∫
f− dµ is finite, then the set function ν(E) :=

∫
E
f dµ is a signed

measure.

Proposition 3.3 (3.1). Let ν be a signed measure on (X,M). If {Ej} is an increasing sequence
in M, then ν(

⋃∞
1 Ej) = limj→∞ ν(Ej). If {Ej} is a decreasing sequence in M and ν(E1) is

finite, then ν(
⋂∞

1 Ej) = limj→∞ ν(Ej).

Lemma 3.4 (3.2). Any measurable subset of a positive set is positive and the union of any
countable family of positive sets is positive.

Theorem 3.5 (3.3: The Hahn Decomposition Theorem). If ν is a signed measure on (X,M),
there exist a positive set P and a negative set N for ν such that P ∪N = X and P ∩N = ∅.
If P ′, N ′ is another such pair, then P∆P ′ (or N∆N ′) is null for ν.

The decomposition of X = P ∪ N as the disjoint union of a positive and negative set is
called a Hahn decomposition for ν. It’s not unique but it ldeas to a canonical representation
of ν as the difference of two positive measures. To state this result, we first need a definition.

Definition 3.6. Let µ and ν be signed measures on (X,M). We say they are mutually
singular or that ν is singular with respect to µ (or vice versa) if there exist E,F ∈ M
such that E ∩ F = ∅, E ∪ F = X, E is null for µ, F is null for ν. We denote this as µ ⊥ ν.

Informally, we might think of mutual singularity as µ and ν “living on disjoints sets.”

Example 3.7. Consider the Dirac measure µ (point mass with respect to x0).

µ(E) =

{
1, x0 ∈ E
0, x0 /∈ E.

µ is singular to the Lebesgue measure m if we let E = {x0} and F = R \ {x0}..

Theorem 3.8 (3.4: The Jordan Decomposition Theorem). If ν is a signed measure, there exist
unique positive measures ν+ and ν− such that ν = ν+ − ν− and ν+ ⊥ ν−.
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The measures ν+ and ν− are called the positive and negative variations of ν. ν = ν+−ν−
is called the Jordan decomposition of ν.

Definition 3.9. The total variation of ν is the measure |ν| := ν+ + ν−.

It is easy to see that ν(E) = 0⇔ |ν|(E) = 0 and ν ⊥ µ⇔ |ν| ⊥ µ⇔ ν+ ⊥ µ and ν− ⊥ µ.
Further observe that if ν omits the value ∞ then ν+(X) = ν(P ) < ∞ so that ν+ is a finite
measure and |nu is bounded above by ν+(X). A similar result holds when ν omits −∞ as a
value. If the range of ν is in R, then ν is bounded.

Also observe that for any signed ν, we may write it as follows: ν(E) =
∫
E
f dµ where µ = |ν|

and f = χP − χN where X = P ∪N is a Hahn decomposition for ν.
Integration with respect to a signed measure ν is defined in the following way: L1(ν) =

L1(ν+) ∩ L1(ν−), ∫
f dν =

∫
f dν+ −

∫
f dν− (f ∈ L1(ν)).

A signed measure ν is called finite (resp. σ-finite) if |ν| is finite (resp. σ-finite).

3.2 The Lebesgue-Radon-Nikodym Theorem

Definition 3.10. Suppose that ν is a signed measure and µ is a positive measure on (X,M).
ν is absolutely continuous with respect to µ if ν(E) = 0 whenever µ(E) = 0 (E ∈M). We
denote this as ν � µ.

It’s easy to check that ν � µ ⇔ |ν| � µ ⇔ ν+ � µ and ν− � µ. In a way, absolute
continuity is the antithesis of mutual singularity. More precisely, if ν ⊥ µ and ν � µ, then
ν = 0. This is because if E and F are disjoint such that X = E ∪ F and µ(E) = |ν|(F ) = 0,
then ν � µ implies that |ν|(E) = 0 and thus, |ν| = 0⇒ ν = 0.

Theorem 3.11 (3.5). Let ν be a finite signed measure and µ a positive measure on (X,M).
Then ν � µ iff for every ε > 0, there exists δ > 0 such that |ν(E)| < ε whenever µ(E) < δ.

If µ is a measure and f is an extended µ-integrable function, the signed measure ν defined
by ν(E) =

∫
E
f dµ is absolutely continuous wrt µ. It is finite iff f ∈ L1(µ). For any complex-

valued f ∈ L1(µ), the preceding theorem can be applied to Re f and Im f . We then get the
following result:

Corollary 3.12 (3.6). If f ∈ L1(µ), for every ε > 0, ther exists δ > 0 such that |
∫
E
f dµ| < ε

whenever µ(E) < δ.

We use this notation to express ν(E) =
∫
E
f dµ: dν = f dµ.

Lemma 3.13 (3.7). Suppose that ν and µ are finite measures on (X,M). Either ν ⊥ µ, or
there exist ε > 0 and E ∈ M such that 0 < µ(E) and ν ≥ εµ on E. That is, E is a positive
set for ν − εµ.

The next theorem gives a complete picture of the structure of a signed measure relative to
a given positive measure.

Theorem 3.14 (3.8: The Lebesgue-Radon-Nikodym Theorem). Let ν be a σ-finite signed mea-
sure and µ a σ-finite positive measure on (X,M). There exist unique σ-finite signed measures
λ, ρ on (X,M) such that
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λ ⊥ µ, ρ� µ, ν = λ+ ρ.

Moreover, there is an extended µ-integrable function f : X → R such that dρ = f dµ; i.e.
ρ(E) =

∫
E
f dµ. Any two such functions are equal µ-almost everywhere.

The decomposition ν = λ + ρ where λ ⊥ µ and ρ � µ is called the Lebesgue decompo-
sition of ν wrt µ. In the case where ν � µ, the LRN Theorem says that dν = f dµ for some
f . f is called the Radon-Nikodym derivative of ν wrt µ. We denote it dν/dµ:

dν =
dν

dµ
dµ.

We have a “chain rule” for these derivatives.

Proposition 3.15 (3.9). Suppose that ν is a σ-finite signed measure and µ, λ are σ-finite
measures on (X,M) such that ν � µ and µ� λ.

1. If g ∈ L1(ν), then g(dν/dµ) ∈ L1(µ) and∫
g dν =

∫
g
dν

dµ
dµ.

2. We have ν � λ and

dν

dλ
=
dν

dµ

dµ

dλ
λ-almost everywhere.

Corollary 3.16 (3.10). If µ� λ and λ� µ, then (dλ/dµ)(dµ/dλ) = 1 a.e. wrt either λ or µ.

Example 3.17. This is a nonexample. Let m be Lebesgue measure and ν the point mass
measure at 0 on (R,BR). It is clear that ν ⊥ m. The nonexistent Radon-Nikodym derivative
dν/dµ is popularly known as the Dirac δ-function.

Proposition 3.18. If µ1, ..., µn are measures on (X,M), there is a measure µ such that µj � µ
for all j—namely, µ =

∑n
1 µj.

3.3 Complex Measures

Definition 3.19. A complex measure on a measurable space (X,M) is a map ν :M→ C
such that

• ν(∅) = 0;

• If {Ej} is a sequence of disjoint sets inM, then ν(
⋃∞Ej) =

∑∞ ν(Ej), where the series
converges absolutely.

Note that complex measures cannot take on infinite values by this definition. So positive
measures are complex only if they are finite.

Example 3.20. If µ is a positive measure and f ∈ L1(µ), then ν(E) =
∫
E
f dµ is a complex

measure.
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If ν is a complex measure, we write νr and νi for the real and imaginary parts of ν; these
are both signed measures and must be finite as ν is complex. Thus, the range of ν is a bounded
subset of C.

We define for complex measure ν, L1(ν) = L1(νr) ∩ L1(νi) and for f ∈ L1(ν),
∫
f dν =∫

f dνr + i
∫
f dνi. If ν, µ are complex measures, we say that ν ⊥ µ if νa ⊥ µb for a, b = r, i and

if λ is a positive measure, we say that ν � λ if νr � λ and νi � λ. The other theorems in §3.2
also generalize by applying to to the real an dimaginary parts. In particular,

Theorem 3.21 (3.12: Complex Lebesgue-Radon-Nikodym Theorem). If ν is a complex mea-
sure and µ is σ-finite, positive on (X,M), there exist a complex measure λ and an f ∈ L1(µ)
such that λ ⊥ µ and dν = dλ+ f dµ. If also λ̃ ⊥ µ and dν = dλ̃+ f̃ dµ, then λ = λ̃ and f = f̃
µ-a.e.

As before, if ν � µ, we denote f by dν/dµ. The total variation of a complex measure ν
is the positive measure |ν| determined by the property that if dν = f dµ where µ is a positive
measure, then d|ν| = |f | dµ. This is well defined independent of the choice of µ and f .

Proposition 3.22 (3.13). Let ν be a complex measure on (X,M).

1. |ν(E)| ≤ |ν|(E) for all E ∈M.

2. ν � |ν| and dν/d|ν| has absolute value 1 |ν|-a.e.

3. L1(ν) = L1(|ν|) and if f ∈ L1(ν), then |
∫
f dν| ≤

∫
|f | d|ν|.

Proposition 3.23 (3.14). If ν1, ν2 are complex measures on (X,M), then |ν1+ν2| ≤ |ν1|+ |ν2|.

3.4 Differentiation on Euclidean Space

The Radon-Nikodym theorem provides an abstract notion of the “derivative” of a signed/complex
measure ν wrt a measure µ. In this section, we consider the Lebesgue measure on Euclidean
space. The pointwise derivative of ν wrt m can be defined in the following way:

Let B(r, x) be the open ball of radius r about x ∈ Rn. Consider the limit:

F (x) = lim
r→0

ν(B(r, x))

m(B(r, x))

when it exists. If ν � m, so that dν = f dm, then ν(B(r, x))/m(B(r, x)) is simply the
average value of f on B(r, x) so one would hope that F = f almost everywhere wrt m. This
is the case provided that ν(B(r, x)) is finite for all r, x. This is regarded as a generalization of
the Fundamental Theorem of Calculus: the derivative of the indefinite integral of f (namely,
ν =

∫
f dm) is f .

Lemma 3.24 (3.15). Let C be a collection of open balls in Rn and let U =
⋃
B∈C B. If c < m(U),

there exist disjoint B1, ..., Bk ∈ C such that 3−nc <
∑km(Bj).

Basically this lemma is saying that for any (possibly uncountable) collection of open balls,
if the measure of their union is larger than a constant c, a finite number of disjoint balls in the
collection make up a percentage of the measure on par with c, scaled by a factor dependent on
the dimension of Rn.

Definition 3.25. A measurable function f : Rn → C is called locally integrable wrt m if∫
K
|f(x)| dx < ∞ for every bounded measurable set K ⊂ Rn. The space of locally integrable

functions is denoted L1
loc.
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Definition 3.26. If f ∈ L1
loc, x ∈ Rn, and r > 0, we define the average value of f on B(r, x)

by

Arf(x) =
1

m(B(r, x))

∫
B(r,x)

f(y) dy.

Lemma 3.27. If f ∈ L1
loc, Arf(x) is jointly continuous in r and x.

Definition 3.28. If f ∈ L1
loc, the Hardy-Littlewood maximal function is defined as

Hf(x) = sup
r>0

Ar|f |(x) = sup
r>0

1

m(B(r, x))

∫
B(r,x)

|f(y)| dy.

Hf is measurable because (Hf)−1((a,∞)) =
⋃
r>0(Ar|f |)−1((a,∞)) is open for any a ∈ R

since Ar|f |(x) is continuous in r and x.

Theorem 3.29 (3.17: The Maximal Theorem). There is a constant C > 0 such that for all
f ∈ L1 and all α > 0,

m({x : Hf(x) > α}) ≤ C

α

∫
|f(x)| dx.

Theorem 3.30 (3.18). If f ∈ L1
loc, then limr→∞Arf(x) = f(x) for a.e. x ∈ Rn.

We might think of this in a different way: If f ∈ L1
loc,

lim
r→0

1

m(B(r, x))

∫
B(r,x)

(f(y)− f(x)) dy = 0 for a.e. x. (3.1)

We can say something stronger; we can have as integrand |f(y)− f(x)| in Equation 3.1 and
it will remain valid. That is, if we define

Lf = {x : lim
r→0

1

m(B(r, x))

∫
B(r,x)

(f(y)− f(x)) dy = 0}

Theorem 3.31 (3.20). If f ∈ L1
loc, then m((Lf )

c) = 0.

We can also make these results more general by defining the limits on sets more general
than balls. Take the next definition:

Definition 3.32. A family {Er}r>0 of Borel subsets of Rn is said to shrink nicely to x ∈ Rn

if

• Er ⊂ B(r, x) for each r;

• there is a constant α > 0, independent of r, such that m(Er) > αm(B(r, x)).

Note that the sets Er need not contain x. For instance, if U ⊂ B(1, 0) is Borel and m(U) > 0
and Er = {x+ ry : y ∈ U}, then {Er} shrinks nicely to x.

Theorem 3.33 (3.21: The Lebesgue Differentiation Theorem). Suppose that f ∈ L1
loc. For

every x in the Lebesgue set of f —in particular, for almost every x — we have

lim
r→0

1

m(Er)

∫
Er

|f(y)− f(x)| dy = 0 and lim
r→0

1

m(Er)

∫
Er

f(y) dy = f(x)

for every family {Er}r>0 that shrinks nicely to x.
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Definition 3.34. A Borel measure ν on Rn will be called regular if

1. ν(K) <∞ for every compact K;

2. ν(E) = inf{ν(U) : U open, E ⊂ U} for every E ∈ BRn.

Condition 2 is actually implied by condition 1 but we include that here. Signed or complex
Borel measures are regular if their total variation are regular.

Example 3.35. If f ∈ L+(Rn), the measure f dm is regular iff f ∈ L1
loc.

Theorem 3.36 (3.22). Let ν be a regular signed or complex Borel measure on Rn and let
dν = dλ + f dm be its Lebesgue-Radon-Nikodym representation. Then for m-almost every
x ∈ Rn,

lim
r→0

ν(Er)

m(Er)
= f(x)

for every family {Er}r>0 that shrinks nicely to x.

3.5 Functions of Bounded Variation

Theorem 3.37 (3.23). Let F : R→ R be increasing and let G(x) = F (x+).

1. The set of points at which F is discontinuous is countable.

2. F and G are differentiable a.e. and F ′ = G′ a.e.

Definition 3.38. If F : R→ C and x ∈ R, define

TF (x) = sup

{
n∑
|F (xj)− F (xj−1)| : n ∈ N,−∞ < x0 < ... < xn = x

}
.

TF is called the total variation function of F .

The idea behind this definition is that of a particle traveling along an interval. The total
variation is described by a function F as the total distance travelled. If F is smooth, we can
simply integrate F . If not, we need to approximate variation on small subintervals and pass to
a limit. It follows that

TF (b)− TF (a) = sup

{
n∑
|F (xj)− F (xj−1)| : n ∈ N, a < x0 < ... < xn = b

}
.

TF is an increasing function with values in [0,∞]. If TF (∞) = limx→∞ TF (x) is finite, we
say that F is of bounded variation on R and denote the space of all such F by BV .

The supremum on the RHS of the equation with TF (b)−TF (a) is called the total variation
of F on [a, b]. It depends only on the values of F on [a, b] so we may define BV [a, b] to be the set
of all functions on [a, b] whose total variation on [a, b] is finite. If F ∈ BV , then its restriction
to [a, b] is in BV [a, b] for all a, b. The total variation of the restriction is simply TF (b)− TF (a).
Conversely, if F ∈ BV [a, b], then we may set F (x) = F (a) for x < a and F (x) = F (b) for
x > b. Then F ∈ BV . Thus, results for BV can be applied to BV [a, b].

Example 3.39. 1. If F : R → R is bounded and increasing, then F ∈ BV and TF (x) =
F (x)− F (−∞).

2. If F,G ∈ BV and a, b ∈ C, then aF + bG ∈ BV .
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3. If F is differentiable on R and F ′ is bounded, then F ∈ BV [a, b] for −∞ < a < b < ∞
(by the mean value theorem).

4. If F (x) = sin x then F ∈ BV [a, b] but F /∈ BV .

5. If F (x) = x sin(1/x) for x 6= 0 and F (0) = 0, then F /∈ BV [a, b] if 0 ∈ [a, b].

Lemma 3.40. If F ∈ BV is real-valued, then TF + F and TF − F are increasing.

Theorem 3.41.

1. F ∈ BV iff Re F ∈ BV and Im F ∈ BV .

2. If F : R → R, then F ∈ BV iff F is the difference of two bounded increasing functions;
for F ∈ BV these functions may be taken to be 1

2
(TF + F ) and 1

2
(TF − F ).

3. If F ∈ BV , then F (x+) = limy↘x F (y) and F (x−) = limy↗x F (y) exist for all x ∈ R as
do F (±∞) = limy→± F (y).

4. If F ∈ BV the set of points at which F is discontinuous is countable.

5. If F ∈ BV and G(x) = F (x+), then F ′ and G′ exist and are equal a.e.

The representation F = 1
2
(TF +F )− 1

2
(TF−F ) of a real-valued F ∈ BV is called the Jordan

decomposition of F . Since x+ = max(x, 0) = 1
2
(|x| + x) and x− = max(−x, 0) = 1

2
(|x| − x)

for x ∈ R, we have

1

2
(TF ± F )(x) = sup

{
n∑

(F (xj)− F (xj−1))
± : x0 < ... < xn = x

}
± 1

2
F (−∞).

Definition 3.42. The space of normalized bounded variation is defined as

NBV = {F ∈ BV : F is right continuous and F (−∞) = 0}.

We observe that if F ∈ BV , then the functions G defined by G(x) = F (x+)−F (−∞) is in
NBV and G′ = F ′ a.e.

Lemma 3.43 (3.28). If F ∈ BV , then Tf (−∞) = 0. If F is also right continuous, then so is
TF .

Theorem 3.44 (3.29). If µ is a complex Borel measure on R and F (x) = µ((−∞, x]), then
F ∈ NBV . Conversely, if F ∈ NBV , there is a unique complex Borel measure µF such that
F (x) = µF ((−∞, x]); moreover, µF | = µTF .

A question to ask is what functions in NBV correspond to measures µ such that µ ⊥ m or
µ� m?

Proposition 3.45 (3.30). If F ∈ NBV , then F ′ ∈ L1(m). Moreover, µF ⊥ m iff F ′ = 0 a.e.
and µF � m iff F (x) =

∫ x
−∞ F

′(t) dt.

The condition µF � m can also be expressed directly in terms of F , as follows. A function
F : R→ C is called absolutely continuous if for every ε > 0 there exists δ > 0 such that for
any finite set of disjoint intervals (a1, b1), ..., (aN , bN),
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n∑
1

(bj − aj) < δ =⇒
N∑
1

|F (bj)− F (aj)| < ε.

F is absolutely continuous on [a, b] if this condition is satisfied whenever the intervals
(aj, bj) are all in [a, b]. Taking N = 1 shows that F is uniformly continuous. On the other
hand, if F is everywhere differentiable and F ′ is bounded, then F is absolutely continuous, for
|F (bj)− F (aj)| ≤ (max |F ′|)(bj − aj) by the Mean Value Theorem.

Proposition 3.46 (3.32). If F ∈ NBV , then F is absolutely continuous iff µF � m.

Corollary 3.47 (3.33). If f ∈ L1(m), then the function F (x) =
∫ x
−∞ f(t) dt is in NBV and is

absolutely continuous, and f = F ′ a.e. Conversely, if F ∈ NBV is absolutely continuous, then
F ′ ∈ L1(m) and F (x) =

∫ x
−∞ F

′(t) dt.

If we consider functions on bounded intervals, this result can be refined.

Lemma 3.48 (3.34). If F is absolutely continuous on [a, b], then F ∈ BV [a, b].

Theorem 3.49 (3.35: The Fundamental Theorem of Calculus for Lebesgue Integrals). If −∞ <
a < b <∞ and F : [a, b]→ C, the following are equivalent:

1. F is absolutely continuous on [a, b].

2. F (x)− F (a) =
∫ x
a
f(t) dt for some f ∈ L1([a, b],m).

3. F is differentiable a.e. on [a, b], F ′ ∈ L1([a, b],m), and F (x)− F (a) =
∫ x
a
F ′(t) dt.

The following decomposition of Borel measures on Rn is sometimes important.

Definition 3.50. A complex Borel measure µ on Rn is called discrete if there is a countable
set {xj} ⊂ Rn and complex numbers cj such that

∑
|cj| <∞ and µ =

∑
cjδxj , where δx is the

point mass at x.

Definition 3.51. µ is called continuous if µ({x}) = 0 for all x ∈ Rn.

Any complex measure µ can be written uniquely as µ = µd + µc where µd is discrete and
µc is continuous. Indeed, let E = {x : µ({x}) 6= 0}. Then µd(A) = µ(A ∩ E) is discrete and
µc(A) = µ(A \ E) is continuous.

If µ is discrete, then µ ⊥ m and if µ� m then µ is continuous. Then, any regular complex
Borel measure µ on Rn can be written uniquely as

µ = µd + µac + µsc

where µd is discrete, µac is absolutely continuous wrt to m and µsc is continuous and singular
to m; i.e. µsc ⊥ m.

The existence of nonzero singular continuous measures in Rn is not too tricky when n > 2.
When n = 1, they correspond to nonconstant functions F ∈ NBV such that F is continuous
but F ′ = 0 a.e. An example of such a function is the Cantor function. There even exist strictly
increasing functions F such that F ′ = 0 a.e.

Example 3.52. [3.5.40] Let F denote the cantor function on [0, 1] and set F (x) = 0 for x < 0
and F (x) = 1 for x > 1. Let {[an, bn]} be an enumeration of the closed subintervals of [0, 1] with
rational endpoints and let Fn(x) = F ((x− an)/(bn − an)). Then G =

∑∞
1 2−nFn is continuous

and strictly increasing on [0, 1], and G′ = 0 a.e.
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If F ∈ NBV , it is customary to denote the integral of a function g wrt the measure µF
by
∫
g dF or

∫
g(x) dF (x). Such integrals are called Lebesgue-Stieltjes integrals. The next

theorem is an integration-by-parts formula for such integrals.

Theorem 3.53 (3.36). If F and G are in NBV and at least one of them is continuous, then
for −∞ < a < b <∞, ∫

(a,b]

F dG+

∫
(a,b]

GdF = F (b)G(b)− F (a)G(a).

4 Point Set Topology

4.1 Basics about Sets

Definition 4.1. The interior of a set A is the union of all open sets contained in A. The
closure of A is the intersection of all closed sets containing A.

Definition 4.2. A set A ⊂ X is called dense if its closure is X. nowhere dense if the
interior of the closure is empty.

Proposition 4.3 (4.5). Every second countable space is separable; i.e. if X has a countable
basis, then there exists a countable dense subset in X.

Proposition 4.4 (4.6). If X is first countable (has local countable basis) and A ⊂ X, then
x ∈ A iff there is a sequence {xj} in A that converges to x.

4.2 Continuous Maps

Proposition 4.5 (4.9). If the topology on Y is generated by a family of sets E, then f : X → Y
is continuous iff f−1(V ) is open in X for every V ∈ E.

Definition 4.6. The space of all bounded real-(resp. complex-) valued functions on X is denoted
B(X,R) (resp. B(X,C)). We will usually not include the target space in notation. The space of
all bounded continuous functions is BC(X) = B(X) ∩ C(X). The uniform norm of f ∈ B(X)
is ‖f‖u = sup{|f(x)| : x ∈ X}.

Proposition 4.7 (4.13). If X is a topological space, BC(X) is a closed subspace of B(X) in
the uniform metric; in particular, BC(X) is complete.

Theorem 4.8 (4.15: Urysohn’s Lemma). Let X be a normal space. If A and B are disjoint
closed sets in X, there exists f ∈ C(X, [0, 1]) such that f = 0 on A and f = 1 on B.

Theorem 4.9 (4.16: The Tietze Extension Theorem). Let X be a normal space. If A is a
closed subset of X and f ∈ C(A, [a, b]), there exists F ∈ C(X, [a, b]) such that F |A = f .

Theorem 4.10 (4.58: The Urysohn Metrization Theorem). Every second countable regular
space is metrizable.

4.3 Nets

Definition 4.11. A directed set is a set A with a binary relation � such that

• a � a for all a ∈ A;

• if a � b and b � c, then a � c;
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• for any a, b ∈ A, there exists c ∈ A such that a � c and b � c.

Note that this is different from partially ordered sets.

Definition 4.12. A net in a set X is a mapping a 7→ xa from a directed set A into X. Nets
are denoted by 〈x〉a∈A. These generalize sequences in which A = N.

Definition 4.13. A net 〈xa〉a∈A is eventually in a set E if there exists a0 ∈ A such that for
every a � a0, xa ∈ E. 〈xa〉a∈A converges to x if for every neighborhood U of x, 〈xa〉a∈A is
eventually in U .

Definition 4.14. A net 〈xa〉a∈A is frequently in a set E if for every a ∈ A, there exists b � a
such that xb ∈ E. x is a cluster point of 〈xa〉a∈A if for every neighborhood U of x, 〈xa〉a∈A is
frequently in U .

4.4 Compact Spaces

Definition 4.15. X is sequentially compact if every sequence in X has a convergent sub-
sequence.

Definition 4.16. A family {Fa}a∈A of subsets of X is said to have the finite intersection
property if

⋂
a∈B Fa 6= ∅ for all finite B ⊂ A.

Proposition 4.17 (4.21). A topological space X is compact iff for every family {Fa}a∈A of
closed sets with the finite intersection property,

⋂
a∈A Fa.

Proposition 4.18 (4.22). A closed subset of a compact space is compact.

Proposition 4.19 (4.24). Every compact subset of a Hausdorff space is closed.

Proposition 4.20 (4.25). Every compact Hausdorff space is normal.

Proposition 4.21 (4.28). If X is compact and Y is Hausdorff, then any continuous bijection
f : X → Y is a homeomorphism.

Theorem 4.22 (4.29). If X is a topological space, the following are equivalent:

1. X is compact.

2. Every net in X has a cluster point.

3. Every net in X has a convergent subnet.

4.5 Locally Compact Hausdorff

Definition 4.23. X is σ-compact if it is a countable union of compact sets.

4.6 Two Compactness Theorems

Theorem 4.24 (4.42: Tychonoff’s Theorem). If {Xa}a∈A is any family of compact topological
spaces, then X =

∏
a∈AXa (with the product topology) is compact.

Definition 4.25. If F ⊂ C(X), F is called equicontinuous at x ∈ X if for every ε > 0,
there is a neighborhood U of x such that |f(y)− f(x)| < ε for all y ∈ U and all f ∈ F .

Definition 4.26. F ⊂ C(X) is called pointwise bounded if {f(x) : f ∈ F} is a bounded
subset of C for each x ∈ X.
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Theorem 4.27 (4.43: Arzelà-Ascoli Theorem I). Let X be a compact Hausdorrf space. If F is
an equicontinuous, pointwise bounded subset of C(X), then F is totally bounded in the uniform
metric; i.e. for every ε > 0, F can be covered by a finite number of ε-balls. Moreover, the
closure of F is compact.

Theorem 4.28 (4.44: Arzelà-Ascoli Theorem II). Let X be σ-compact and locally compact
Hausdorff. If {fn} is an equicontinuous, pointwise bounded sequence in C(X), there exist
f ∈ C(X) and a subsequence of {fn} that converges to f uniformly on compact sets.

4.7 The Stone-Weierstrass Theorem

Definition 4.29. A subset A ⊂ C(X) is said to separate points if for every distinct x, y ∈ X,
there exists f ∈ A such that f(x) 6= f(y).

Definition 4.30. A subset A ⊂ C(X) is called an algebra if it is a real (resp. complex) vector
space of C(X,R) (resp. C(X,C)) such that fg ∈ A whenever f, g ∈ A.

Definition 4.31. A subset A ⊂ C(X) is called an lattice if max(f, g) and min(f, g) are in A
whenever f, g ∈ A.

Theorem 4.32 (4.45: The Stone-Weierstrass Theorem). Let X be a compact Hausdorff space.
If A is a closed subalgebra of C(X,R) that separates points, then either A = C(X,R) or
A = {f ∈ C(X,R) : f(x0) = 0} for some x0 ∈ X. The first alternative holds iff A contains the
constant functions.

Theorem 4.33 (4.51: The Complex Stone-Weierstrass Theorem). Let X be a compact Haus-
dorff space. If A is a closed complex subalgebra of C(X) that separates points and is closed
under complex conjugation, then either A = C(X) or A = {f ∈ C(X) : f(x0) = 0} for some
x0 ∈ X.

5 Elements of Functional Analysis

Functional analysis is the study of infinite-dimensional vector spaces over R or C and the linear
maps between them. Topology is what distinguishes the finite and infinite case. In finite
vector spaces, there is usually only one reasonable topology and linear maps are automatically
continuous. The infinite case is trickier.

5.1 Normed Vector Spaces

Definition 5.1. A seminorm on X is a function x 7→ ‖x‖ from X to [0,∞) such that

• ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ X (the triangle inequality),

• ‖λx‖ = |λ|‖x‖ for all x ∈ X and λ ∈ K.

If ‖x‖ = 0 only when x = 0, then ‖ · ‖ is a norm.

Definition 5.2. A normed vector space has a norm topology. Two norms ‖ · ‖1, ‖ · ‖2 are called
equivalent if there exists C1, C2 > 0 such that

C1‖x‖1 ≤ ‖x‖2 ≤ C2‖x‖1, ∀x ∈ X.

If every Cauchy sequence converges in a normed space, the space is called a complete normed
vector space or Banach.

23



Theorem 5.3 (5.1). A normed vector space X is complete iff every absolutely convergent series
in X converges; i.e. given that

∑∞ ‖xn‖ converges,
∑∞ xn converges.

If X, Y are normed space, X×Y may be given a product norm ‖(x, y)‖ = max(‖x‖, ‖y‖).
Other equivalent norms include ‖x‖+ ‖y‖ or (‖x‖2 + ‖y‖2)1/2.

If M is a subspace of X, the quotient space is defined by modding out by the relation
x ∼ y iff x− y ∈M . X/M inherits the quotient norm ‖x+M‖ = infy∈M ‖x+ y‖.

Definition 5.4. A linear map T : X → Y is called bounded if there exists C ≥ 0 such that
‖Tx‖ ≤ C‖x‖ for all x ∈ X.

Proposition 5.5 (5.2). If X and Y are normed vector spaces and T : X → Y is linear, the
following are equivalent:

1. T is continuous.

2. T is continuous at 0.

3. T is bounded.

Definition 5.6. If X, Y are normed, the space of all bounded linear maps from X to Y is
denoted L(X, Y ) and is given the norm:

‖T‖ = sup{‖Tx‖ : ‖x‖ = 1}

= sup

{
‖Tx‖
‖x‖

: x 6= 0

}
= inf{C : ‖Tx‖ ≤ C‖x‖, x ∈ X}

Proposition 5.7 (5.4). If Y is complete, so is L(X, Y ).

If T ∈ L(X, Y ), S ∈ L(Y, Z), then ‖STx‖ ≤ ‖S‖‖Tx‖ ≤ ‖S‖‖T‖‖x‖. Thus, ST ∈ L(X,Z).

Definition 5.8. If T ∈ L(X, Y ) T is said to be invertible or an isomorphism if T is bijective
and T−1 is bounded (i.e. ‖Tx‖ ≥ C‖x‖ for some x ∈ X). T is an isometry of ‖Tx‖ = ‖x‖
for all x ∈ X. An isometry is injective but not necessarily surjective; it is an isomorphism onto
its image.

5.2 Linear Functionals

Let X be a vector space over K = R or C. Then if X is normed, L(X,K) is called the space of
bounded linear functionals on X or also called the dual space of X and is usually denoted
X∗. X∗ is complete since K is complete.

Proposition 5.9 (5.5). Let X be a vector space over C. If f is a complex linear functional
on X and u = Re f , then u is a real linear functional and f(x) = u(x) − iu(ix) for all
x ∈ X. COnversely, if u is a real linear functional on X and f : X → C is defined by
f(x) = u(x)−iu(ix), then f is complex linear. In this case, if X is normed, we have ‖u‖ = ‖f‖.

Definition 5.10. If X is a real vector space, a sublinear functional on X is a map p : X →
R such that

p(x+ y) ≤ p(x) + p(y), p(λx) = λp(x), ∀x, y ∈ X,λ ≥ 0.

Theorem 5.11 (5.6: The Hahn-Banach Theorem). Let X be a real vector space, p a sublinear
functional on X, M a subspace of X, and f a linear functional on M such that f(x) ≤ p(x) for
all x ∈ M . Then there exists a linear functional F on X such that F (x) ≤ p(x) for all x ∈ X
and F |M = f .
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Theorem 5.12 (5.7: The Complex Hahn-Banach Theorem). Let X be a complex vector space,
p a seminorm on X, M a subspace of X, and f a complex linear functional on M such that
|f(x)| ≤ p(x) for all x ∈ M . Then there exists a complex linear functional F on X such that
|F (x)| ≤ p(x) for all x ∈ X and F |M = f .

Theorem 5.13 (5.8). Let X be a normed vector space.

1. If M is a closed subspace of X and x ∈ X \M , there exists f ∈ X∗ such that f(x) 6= 0
and f |M = 0. In fact, if δ = infy∈M ‖x− y‖.

2. If x 6= 0, there exists f ∈ X∗ such that ‖f‖ = 1 and f(x) = ‖x‖.

3. The bounded linear functionals on X separate points.

4. If x ∈ X, define x̂ : X∗ → C by x̂(f) = f(x). Then the map x 7→ x̂ is a linear isometry
from X into X∗∗.

Let X̂ = {x̂ : x ∈ X}. Since X∗∗ is always complete, the closure X̂ of X̂ is Banach and

the map x 7→ x̂ embeds X into X̂ as a dense subspace. X̂ is called the completion of X. In

particular, if X is Banach, then X̂ = X̂.
If X is finite dimensional, X̂ = X∗∗ since they have the same dimension. In infinite dimen-

sions, this might not hold. If X̂ = X∗∗, X is called reflexive. Since we may identify x̂ with x,
reflexivity means X∗∗ = X.

5.3 The Baire Category Theorem and its Consequences

Theorem 5.14 (5.9: The Baire Category Theorem). Let C be a complete metric space.

1. If {Un}∞ is a sequence of open dense subsets of X, then
⋂∞ Un is dense in X.

2. X is not a countable union of nowhere dense sets.

Since the Baire Category Theorem is a toplogical statement, we may apply it to spaces
homeomorphic to complete metric spaces. For example, (0, 1) is not complete but is homeo-
morphic to R which is complete.

A set which is a countable union of nowhere dense sets is called meager or of the first
category. The complement of a meager set is called residual. Nonmeager sets are of the
second category.

Theorem 5.15 (5.10: The Open Mapping Theorem). Let X, Y be Banach spaces. If T ∈
L(X, Y ) is surjective, then T is open.

Corollary 5.16 (5.11). If X, Y are Banach spaces and T ∈ L(X, Y ) is bijective, then T is an
isomorphism; that is T−1 ∈ L(Y,X).

Definition 5.17. The graph of T is defined as

Γ(T ) = {(x, y) ∈ X × Y : y = Tx}.
Γ(T ) is a subspace of X × Y . We say that T closed if Γ(T ) is closed in X × Y .

If T is continuous, then T is closed. The next theorem gives conditions for the converse to
hold.

Theorem 5.18 (5.12: The Closed Graph Theorem). If X, Y are Banach spaces and T : X → Y
is a closed linear map, then T is bounded.
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Continuity of a linear map T : X → Y means that if xn → x, then Txn → Tx wherease
closedness means that if xn → x and Txn → y, then y = Tx. Thus, the Closed Graph Theorem
says that Txn does converge to something and we only need to check that it converges to Tx.

Theorem 5.19 (5.13: The Uniform Boundedness Principle). Suppose that X, Y are normed
vector spaces and A ⊂ L(X, Y ).

1. If supT∈A ‖Tx‖ <∞ for all x in some nonmeager subset of X, then supT∈A ‖T‖ <∞.

2. If X is a Banach space and supT∈A ‖Tx‖ <∞ for all x ∈ X, then supT∈A ‖T‖ <∞.

5.4 Topological Vector Spaces

Definition 5.20. A topological vector space is a vector space endowed with a topology such
that (x, y) 7→ x+ y and (λ, x) 7→ λx are continuous maps.

Definition 5.21. A topological vector space is called locally convex if there is a basis for the
topology consisting of convex sets; i.e. sets A such that if x, y ∈ A, then tx + (1− t)y ∈ A for
t ∈ (0, 1).

Another way to think of convex sets is that for any point not in the set, one can separate
the point and the set with a hyperplane. On R2, every norm gives a convex, balanced (contains
x and −x), unit ball. Thus, there is a 1-1 correspondence between convex, balanced sets
containing 0 and norms on R2. However, inner products correspond to ellipses.

The next theorem shows how we can generate “balls” for a topology without a norm.

Theorem 5.22 (5.14). Let {pa}a∈A be a family of seminorms on the vector space X. If x ∈ X,
a ∈ A, and ε > 0, let

Uxaε = {y ∈ X : pa(y − x) < ε},

and let T be the topology generated by the sets Uxaε.

1. For each x ∈ X, the finite intersections of the sets Uxaε form a neighborhood basis at x.

2. If 〈xi〉i∈I is a net in X, then xi → x iff pa(xi − x)→ 0 for all a ∈ A.

3. (X, T ) is a locally convex topological vector space.

Proposition 5.23 (5.15). Suppose X, Y are vector spaces with topologies defined, respectively,
by the families {pa}a∈A and {qb}b∈B of seminorms, and T : X → Y is a linear map. Then
T is continuous iff for each b ∈ B, there exist a1, ..., al ∈ A and C > 0 such that qb(Tx) ≤
C
∑k paj(x).

Proposition 5.24 (5.16). Let X be a vector space equipped with the topology defined by a family
{pa}a∈A of seminorms.

1. X is Hausdorff iff for each x 6= 0 there exists a ∈ A such that pa(x) 6= 0.

2. If X is Hausdorff and A is countable, then X is metrizable with a translation-invariant
metric; i.e. ρ(x, y) = ρ(x+ z, y + z) for al x, y, z ∈ X.

If X has the topology defined by a family of seminorms, the Hahn-Banach theorem guar-
antees the existence of lots of continuous linear functionals on X — enough to separate points
if X is Hausdorff.
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Definition 5.25. A complete Hausdorff topolgical vector space whose topology is defined by a
countable family of seminorms is called a Fréchet space.

It is a result that no norm on C∞[0, 1] makes d
dx

a bounded operator. Simply consider
fn(x) = xn. However, the differential operator can be bounded if we define a topology with
seminorms.

Definition 5.26. The weak topology on X is the coarsest topology on X such that every
f ∈ X∗ is continuous. A net 〈xa〉 in X converges weakly to x iff f(xa)→ f(x) for all f ∈ X∗.

Definition 5.27. The weak*-topology is the topology generated by X ↪→ X∗∗. It is weaker
than the weak topology on X∗ and is the topology of pointwise convergence: fn → f iff x̂(fn) =
fn(x)→ f(x) = x̂(f).

Definition 5.28. Let X, Y be Banach. The topology on L(X, Y ) generated by the evaluation
maps T 7→ Tx (x ∈ X) is called the strong operator topology on L(X, Y ) and the topology
generated by the linear functionals T 7→ f(Tx) (x ∈ X, f ∈ Y ∗) is called the weak operator
topology on L(X, Y ).

We may understand these topologies in terms of convergence: Tα → T strongly iff Tαx 7→ Tx
in the norm topology of Y for each x ∈ X whereas Tα → T weakly iff Tαx → Tx in the weak
topology of Y for each x ∈ X. Thus, the strong operator topology is finer than the weak operator
topology but coarser than the norm topology on L(X, Y ).

Proposition 5.29 (5.17). Suppose {Tn}∞ ⊂ L(X, Y ), supn ‖Tn‖ < ∞ and T ∈ L(X, Y ). If
‖Tnx− Tx‖ → 0 for all x in a dense subset D of X, then Tn → T strongly.

Theorem 5.30 (5.18: Alaoglu’s Theorem). If X is a normed vector space, the closed unit ball
B∗ = {f ∈ X∗ : ‖f‖ ≤ 1} in X∗ is compact in the weak* topology.

5.5 Hilbert Spaces

Definition 5.31. An inner product on a complex vector space H is a map (x, y) 7→ 〈x, y〉
from H ×H → C satisfying:

1. 〈ax+ by, z〉 = a〈x, z〉+ b〈y, z〉 for all x, y, z ∈ H, a, b ∈ C.

2. 〈y, x〉 = 〈x, y〉.

3. 〈x, x〉 ∈ (0,∞) for all nonzero x ∈ H.

It follows that 〈x, ay + bz〉 = ā〈x, y〉+ b̄〈x, z〉 for all x, y, z ∈ H and a, b ∈ C.

Definition 5.32. A complex vector space with an inner product is called a pre-Hilbert space.
We define ‖x‖ =

√
〈x, x〉 to be the norm of x. If H is complete wrt ‖ · ‖, then H is called a

Hilbert space.

Theorem 5.33 (5.19: The Cauchy-Schwarz Inequality). |〈x, y〉| ≤ ‖x‖‖y‖ for all x, y ∈ H
with equality iff x, y are linearly dependent.

From here, we assume H is a Hilbert space.

Proposition 5.34 (5.21). If xn → x and yn → y, then 〈xn, yn〉 → 〈x, y〉.

Theorem 5.35 (5.22: The Parallelogram Law). For all x, y ∈ H, ‖x + y‖2 + ‖x − y‖2 =
2(‖x‖2 + ‖y‖2).
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If a norm does not satisfy the parallelogram law, then it is not induced by an inner product.

Definition 5.36. If x, y ∈ H and 〈x, y〉 = 0, we write x ⊥ y and say x is orthogonal to y. If
E ⊂ H, we define E⊥ = {x ∈ H : 〈x, y〉y = 0, ∀y ∈ E}.

E⊥ is a closed subspace of H.

Theorem 5.37 (5.23: The Pythagorean Theorem). If x1, ..., xn ∈ H and xj ⊥ xk for j 6= k,∥∥∥∥∥
n∑
1

xj

∥∥∥∥∥
2

=
n∑
1

‖xj‖2

Theorem 5.38 (5.24). If M is a closed subspace of H, then H = M ⊕M⊥; i.e. every x ∈ H
can be uniquely expressed as x = y+z where y ∈M, z ∈M⊥. Moreover, y and z are the unique
elements of M and M⊥ whose distance to x is minimal.

Theorem 5.39 (5.25: The Riesz Representation Theorem). If H is a Hilbert space and f ∈ H∗,
there is a unique y ∈ H such that f(x) = 〈x, y〉 for all x ∈ H.

If H is not complete, then this doesn’t hold. The Riesz Representation Theorem shows that
Hilbert spaces are reflexive in a strong sense: not only is H naturally isomorphic to H∗∗, it is
naturally isomorphic to H∗.

The Gram-Schmidt process converts a linearly independent sequence {xn}∞ into an
orthonormal sequence.

Theorem 5.40 (5.26: Bessel’s Inequality). If {ua}a∈A is an orthonormal set in H, then for
any x ∈ H, ∑

a∈A

|〈x, ua〉|2 ≤ ‖x‖2.

In particular, {a : 〈x, ua〉 6= 0} is countable.

Theorem 5.41 (5.27). If {ua}a∈A is an orthonormal set in H, the following are equivalent:

1. (Completeness) If 〈x, ua〉 = 0 for all a, then x = 0.

2. (Parseval’s Identity) ‖x‖2 =
∑

a∈A |〈x, ua〉|2 for all x ∈ H.

3. For each x ∈ H, x =
∑

a∈A〈x, ua〉ua where the sum on the right has only countable many
nonzero terms and converges in the norm topology no matter how these terms are ordered.

An orthonormal set having the properties of Theorem 5.41 is called an orthonormal basis
for H.

Proposition 5.42 (5.28). Every Hilbert space has an orthonormal basis.

The proof uses Zorn’s Lemma.

Proposition 5.43 (5.29). A Hilbert space H is separable iff it has a countable orthonormal
basis, in which case, every orthonormal basis for H is countable.

Example 5.44. R considered as a vector space over Q has an inner product and is complete
with respect to the induced norm. Also, Q is a countable dense subset of R; i.e R is separable.
However, R does not have a countable orthonormal basis. For it to have an orthonormal basis,
it can only have one basis element; namely ±1. But this is not enough to generate all of R and
in fact, R does not even have a countable basis let alone an orthonormal one. This is because
R over Q is not a Hilbert space; Hilbert spaces are over R or C.
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Definition 5.45. Let H1, H2 be Hilbert spaces with inner products 〈·, ·〉1, 〈·, ·〉2, respectively.
A unitary map U : H1 → H2 is an invertible linear map that preserves inner products:
〈Ux, Uy〉1 = 〈x, y〉1 for all x, y ∈ H1.

Every unitary map is an isometry; i.e. ‖Ux‖ = ‖x‖. Conversely, every surjective isometry
is unitary. Thus, unitary maps are the true “isomorphisms” in the category of Hilbert spaces.
They preserve linear structure, topology, norms, and inner products. From the point of view
of abstract structure, every Hilbert space looks like an `2 space and every finite subspace of a
Hilbert space looks Euclidean.

Definition 5.46. Let A be any nonempty set. `2(A) is the set of functions f : A→ C such that
the sum

∑
a∈A |f(a)|2 is finite. This is defined to be the supremum of its finite partial sums.

Proposition 5.47 (5.30). Let {ea}a∈A be an orthonormal basis for X. Then the correspondence
x 7→ x̂ defined by x̂(a) = 〈x, ua〉 is a unitary map from H to `2(A).

6 Tricks and Methods

In this section, we mention some useful methods for solving problems in analysis.

• Instead of showing x ≤ y directly, it is usually a lot easier to show that, for all ε > 0,
x ≤ y + ε. To show x = y, perhaps show that x ≤ y ≤ x+ ε for all ε.

• Work with “discretized” ε = 1/n and let n→∞.

• Enumerate the rationals {rn} and build functions fn. One may want to consider their
sum: f =

∑∞ fn. Another thing to remember is that every interval in R, no matter the
size, contains a rational.

• Splitting a set into disjoint pieces can be useful such as E = (E \ F ) ∪ (F ∩ E). Also,
taking a sequence of sets {Ej}∞ and creating a disjoint sequence whose union is still the
same:

Fk = Ek \

[
k−1⋃

Ej

]
= Ek ∩

[
k−1⋃

Ej

]c
.

⋃∞ Fk =
⋃∞Ej.

• Buldings sets {An} and considering A =
⋃∞An or

⋂∞An.

• Let ε > 0 and consider ε/2n. At some point, take
∑∞ ε/2n = ε.

• Cantor Set, Cantor function.
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