
Invariance of Morse Homology

Sam Auyeung

August 22, 2019

This is a note on showing that the Morse homology is independent of the chosen Morse
function and Smale pseudo-gradient field. Let f0, f1 : V → R be two Morse functions on a
smooth compact manifold V and X0, X1 adapted pseudo-gradients to f0, f1, respectively. We’ll
show there is a morphism of complexes that induces an isomorphism on homology:

Φ∗ : (C∗(f0), ∂X0)→ (C∗(f1), ∂X1)

Outline of the proof:

1. We choose a function F : V × [0, 1]→ R such that{
F (x, s) = f0 s ∈ [0, 1/3]

F (x, s) = f1 s ∈ [2/3, 1]

We call such a function an interpolation. This gives us a morphism ΦF on chain
complexes as above.

2. Let (f0, X0) = (f1, X1). We show that I = F (x, s) = f0 for all x ∈ V and every s. Also,
ΦI = id.

3. Let (f2, X2) be another Morse-Smale pair. Let G be an interpolation between f1 and f2
stationary on s ∈ [0, 1/3] ∪ [2/3, 1] and H an interpolation between f0 and f2 with the
same properties. We prove that the morphisms

ΦG ◦ ΦF ,ΦH : (C∗(f0), ∂X0)→ (C∗(f2), ∂X2)

coincide on the homology level. Thus, if (f0, X0) = (f2, X2), then H = I, ΦH = id, and
so ΦF and ΦG must be isomorphisms.

1 First Step

Let A = [−1/3, 1/3], B = [2/3, 4/3], C = [−1/3, 4/3]. We extend F to V × C by letting
F (x, s) = f0 on s ∈ A and F (x, s) = f1 on s ∈ B. Let g : R → R be a Morse function whose
critical points are 0 (max) and 1 (min) which is increasing on (−∞, 0) and (1,+∞). Let it also
be sufficiently decreasing on (0, 1) such that

∀x ∈ V, ∀s ∈ (0, 1),
∂F

∂s
(x, s) + g′(s) < 0.
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The Morse function g

These properties of g makes it so that the function F̃ = F + g : V × C is a Morse function
whose critical points are Crit(F̃ ) = Crit(f0)× {0} ∪ Crit(f1)× {1}. This is so because F = f0
on A and f1 on B and g′(0) = g′(1) = 0. The sufficiently decreasing condition makes it so there
are no critical points in the intermediary interval (0, 1).

Moreover, if a ∈ Crit(f0) and b ∈ Crit(f1), then IndF̃ (a, 0) = Indf0(a)+1 while IndF̃ (b, 1) =
Indf1(b). With a partition of unity, we can construct a pseudo-gradient field X that is adapted

to F̃ and coincides with {
X0 +∇g on V × A

X1 +∇g on V ×B.

X is thus transverse to the boundary of V × [−1/3, 4/3]. We may perturb X by a C1 small

amount to get a Smale pseudo-gradient field. We call it X̃. Moreover, we can do so in a way
that X is transverse to the slices V × {s}, s ∈ {−1

3
, 1
3
, 2
3
, 4
3
}. The small perturbation also

preserves the number of trajectories between critical points of consecutive index.
Therefore, we can choose an X̃ such that when F̃ is restricted to V × A, then

(C∗(F̃ |V×A), ∂X̃) = (C∗(f0 + g)|A, ∂X0+∇g) = (C∗+1(f0), ∂X0).

Similarly, when restricting F̃ to V ×B,

(C∗(F̃ |V×B), ∂X̃) = (C∗(f1 + g)|B, ∂X1+∇g) = (C∗(f1), ∂X1).

Now, X̃ has two types of trajectories that connect critical points of F̃ . (1) Those that remain in
the interval A or B, thereby, are trajectories of X0 or X1. (2) Those that go from a critical point

of f0 to a critical point of f1 (they cross over). Therefore, we have Ck+1(F̃ ) = Ck(f0)⊕Ck+1(f1).
Thus, the differential

∂X̃ : Ck(f0)⊕ Ck+1(f1)→ Ck−1(f0)⊕ Ck(f1)

has a matrix of the form

∂X̃ =

(
∂X0 0

ΦF ∂X1 .

)
ΦF is defined as you would expect: Let nX̃(a, b) be the mod 2 count of the number of trajectories

of X̃ between a ∈ Critk(f0) and b ∈ Critk(f1). Then ΦF (a) =
∑

b nX̃(a, b)b. Technically, we’re

considering (a, 0) and (b, 1) as critical points of F̃ .

This ∂X̃ defines for us a Morse chain complex (C∗(F̃ , X̃)) for the manifold V × [−1/3, 4/3].
This ∂2

X̃
= 0 which implies that

ΦF ◦ ∂X0 + ∂X1 ◦ ΦF = 0 =⇒ ΦF ◦ ∂X0 = ∂X1 ◦ ΦF .

The last equality holds because we’re considering Z2 coefficients. Thus, ΦF is a chain complex
morphism.
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2 Second Step

Now we suppose that (f0, X0) = (f1, X1) and I(x, s) = f0(x) for all s. Using the same g as above,
we get X = X0+∇g is a Smale adapted pseudo-gradient field. Moreover, for every critical point
a of f0, there is a unique trajectory from (a, 0) to some (c, 1) where Indf0(a) = Indf0(c). This
(c, 1) is in fact (a, 1) and the trajectory is the straight line `a : [−1/3, 4/3] → V × [−1/3, 4/3]
`a(s) = (a, s). Thus, ΦI(a) = a so ΦI = id.

3 Third Step

Suppose we have the three interpolating functions F,G,H from f0 to f1, f1 to f2, and f0 to
f2, resp. We now construct an interpolation of these interpolations K : V × [−1/3, 4/3]2 → R
satisfying

K(x, s, t) =


H(x, t), s ∈ [−1/3, 1/3]

G(x, t), s ∈ [2/3, 4/3]

F (x, s), t ∈ [−1/3, 1/3]

f2(x), t ∈ [2/3, 4/3]

Interpolating the Interpolations

We continue to use a Morse function g : R→ R as above and require that

∂K

∂s
(x, s, t) + g′(s) < 0 for all (x, s, t) ∈ V × (0, 1)× [1/3, 4/3]

and
∂K

∂s
(x, s, t) + g′(t) < 0 for all (x, s, t) ∈ V × [1/3, 4/3]× (0, 1)

Lastly, let K̃(x, s, t) = K(x, s, t)+g(s)+g(t). The critical points of K̃ are in the shaded regions

of the figure above, where in those regions, K̃ has the form fi(x) + g(s) + g(t), i = 0, 1, 2.

Moreover, the critical points of K̃ are exactly the union of Crit(f0) × {0} × {0}, Crit(f1) ×
{1} × {0}, Crit(f2)× {0} × {1}, and Crit(f2)× {1} × {1}. The indices are as follows:
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• If a ∈ Crit(f0), then IndK̃((a, 0, 0)) = Indf0(a) + 2.

• If b ∈ Crit(f1), then IndK̃((b, 1, 0)) = Indf1(b) + 1.

• If c ∈ Crit(f2), then IndK̃((c, 0, 1)) = Indf2(c) + 1 and IndK̃((c, 1, 1)) = Indf2(c).

Let X be the pseudo-gradient adapted to F and Y the one for G. Let Z be a pseudo-gradient
for H(x, t) + g(t) : V × [−1/3, 4/3]→ R. Using a partition of unity, construct a vector field W

adapted to K̃ such that:

• For s ∈ [−1/3, 1/3], W (x, s, t) = Z(x, t) +∇g(s).

• For s ∈ [2/3, 4/3], W (x, s, t) = Y (x, t) +∇g(s).

• For t ∈ [−1/3, 1/3], W (x, s, t) = X(x, s) +∇g(t).

• For t ∈ [2/3, 4/3], W (x, s, t) = X2 +∇g(s) +∇g(t).

We then perturb W to some Smale W̃ , taking care to ensure that outside of V × [1/3, 2/3]2,
the trajectories of W connecting critical points of consecutive indices are in 1-1 correspondence
with those of W̃ . We have

Ck+1(K̃) = Ck−1(f0)⊕ Ck(f1)⊕ Ck(f2)⊕ Ck+1(f2).

Then (C∗(K̃), ∂W̃ ) is a Morse chain complex for on V × [−1/3, 4/3]2. We may represent the
differential in the following way (letting S : Ck−1(f0)→ Ck(f2) be some map):

∂W̃ =


∂X0 0 0 0

ΦF ∂X1 0 0

ΦH 0 ∂X2 0

S ΦG id ∂X2


The fact that ∂2

W̃
= 0 means that S ◦ ∂X0 + ΦG ◦ ΦF + ΦH + ∂X2 ◦ S = 0 or, because of Z2

coefficients, ΦG ◦ ΦF − ΦH = S ◦ ∂X0 + ∂X2 ◦ S. This means that S is a chain-homotopy and
thus ΦG ◦ΦF and ΦH induce the same morphism on homology. Then, when (f0, X0) = (f2, X2),
this means H = I and ΦG ◦ ΦF = id. Hence, we have isomorphims for Morse homology.
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