Invariance of Morse Homology

Sam Auyeung

August 22, 2019

This is a note on showing that the Morse homology is independent of the chosen Morse function and Smale pseudo-gradient field. Let $f_0, f_1 : V \to \mathbb{R}$ be two Morse functions on a smooth compact manifold V and X_0, X_1 adapted pseudo-gradients to f_0, f_1 , respectively. We'll show there is a morphism of complexes that induces an isomorphism on homology:

$$
\Phi_*: (C_*(f_0), \partial_{X_0}) \to (C_*(f_1), \partial_{X_1})
$$

Outline of the proof:

1. We choose a function $F: V \times [0,1] \to \mathbb{R}$ such that

$$
\begin{cases} F(x,s) = f_0 & s \in [0,1/3] \\ F(x,s) = f_1 & s \in [2/3,1] \end{cases}
$$

We call such a function an **interpolation**. This gives us a morphism Φ^F on chain complexes as above.

- 2. Let $(f_0, X_0) = (f_1, X_1)$. We show that $I = F(x, s) = f_0$ for all $x \in V$ and every s. Also, $\Phi^I = \text{id}.$
- 3. Let (f_2, X_2) be another Morse-Smale pair. Let G be an interpolation between f_1 and f_2 stationary on $s \in [0, 1/3] \cup [2/3, 1]$ and H an interpolation between f_0 and f_2 with the same properties. We prove that the morphisms

$$
\Phi^G \circ \Phi^F, \Phi^H : (C_*(f_0), \partial_{X_0}) \to (C_*(f_2), \partial_{X_2})
$$

coincide on the homology level. Thus, if $(f_0, X_0) = (f_2, X_2)$, then $H = I$, $\Phi^H = id$, and so Φ^F and Φ^G must be isomorphisms.

1 First Step

Let $A = [-1/3, 1/3], B = [2/3, 4/3], C = [-1/3, 4/3].$ We extend F to $V \times C$ by letting $F(x, s) = f_0$ on $s \in A$ and $F(x, s) = f_1$ on $s \in B$. Let $g : \mathbb{R} \to \mathbb{R}$ be a Morse function whose critical points are 0 (max) and 1 (min) which is increasing on $(-\infty, 0)$ and $(1, +\infty)$. Let it also be sufficiently decreasing on $(0, 1)$ such that

$$
\forall x \in V, \forall s \in (0, 1), \quad \frac{\partial F}{\partial s}(x, s) + g'(s) < 0.
$$

The Morse function g

These properties of g makes it so that the function $\widetilde{F} = F + g : V \times C$ is a Morse function whose critical points are Crit $(\widetilde{F}) = \mathrm{Crit}(f_0) \times \{0\} \cup \mathrm{Crit}(f_1) \times \{1\}$. This is so because $F = f_0$ on A and f_1 on B and $g'(0) = g'(1) = 0$. The sufficiently decreasing condition makes it so there are no critical points in the intermediary interval (0, 1).

Moreover, if $a \in \text{Crit}(f_0)$ and $b \in \text{Crit}(f_1)$, then $\text{Ind}_{\tilde{F}}(a, 0) = \text{Ind}_{f_0}(a) + 1$ while $\text{Ind}_{\tilde{F}}(b, 1) =$ $\text{Ind}_{f_1}(b)$. With a partition of unity, we can construct a pseudo-gradient field X that is adapted to \tilde{F} and coincides with

$$
\begin{cases} X_0 + \nabla g & \text{on } V \times A \\ X_1 + \nabla g & \text{on } V \times B. \end{cases}
$$

X is thus transverse to the boundary of $V \times [-1/3, 4/3]$. We may perturb X by a C^1 small amount to get a Smale pseudo-gradient field. We call it \widetilde{X} . Moreover, we can do so in a way that X is transverse to the slices $V \times \{s\}, s \in \{-\frac{1}{3}, \frac{1}{3}\}$ $\frac{1}{3}, \frac{2}{3}$ $\frac{2}{3}, \frac{4}{3}$ $\frac{4}{3}$. The small perturbation also preserves the number of trajectories between critical points of consecutive index.

Therefore, we can choose an X such that when F is restricted to $V \times A$, then

$$
(C_*(F|_{V\times A}),\partial_{\tilde{X}})=(C_*(f_0+g)|_A,\partial_{X_0+\nabla g})=(C_{*+1}(f_0),\partial_{X_0}).
$$

Similarly, when restricting \widetilde{F} to $V \times B$,

$$
(C_*(\overline{F}|_{V\times B}),\partial_{\widetilde{X}})=(C_*(f_1+g)|_B,\partial_{X_1+\nabla g})=(C_*(f_1),\partial_{X_1}).
$$

Now, \widetilde{X} has two types of trajectories that connect critical points of \widetilde{F} . (1) Those that remain in the interval A or B, thereby, are trajectories of X_0 or X_1 . (2) Those that go from a critical point of f_0 to a critical point of f_1 (they cross over). Therefore, we have $C_{k+1}(F) = C_k(f_0) \oplus C_{k+1}(f_1)$. Thus, the differential

$$
\partial_{\tilde{X}}: C_k(f_0) \oplus C_{k+1}(f_1) \to C_{k-1}(f_0) \oplus C_k(f_1)
$$

has a matrix of the form

$$
\partial_{\widetilde{X}} = \begin{pmatrix} \partial_{X_0} & 0 \\ \Phi^F & \partial_{X_1} \end{pmatrix}
$$

 Φ^F is defined as you would expect: Let $n_{\tilde{X}}(a, b)$ be the mod 2 count of the number of trajectories of X between $a \in \mathrm{Crit}_k(f_0)$ and $b \in \mathrm{Crit}_k(f_1)$. Then $\Phi^F(a) = \sum_b n_{\tilde{X}}(a, b)b$. Technically, we're considering $(a, 0)$ and $(b, 1)$ as critical points of F.

This $\partial_{\tilde{X}}$ defines for us a Morse chain complex $(C_*(\tilde{F}, \tilde{X}))$ for the manifold $V \times [-1/3, 4/3]$. This $\partial_{\tilde{X}}^2 = 0$ which implies that

$$
\Phi^F \circ \partial_{X_0} + \partial_{X_1} \circ \Phi^F = 0 \Longrightarrow \Phi^F \circ \partial_{X_0} = \partial_{X_1} \circ \Phi^F.
$$

The last equality holds because we're considering \mathbb{Z}_2 coefficients. Thus, Φ^F is a chain complex morphism.

2 Second Step

Now we suppose that $(f_0, X_0) = (f_1, X_1)$ and $I(x, s) = f_0(x)$ for all s. Using the same g as above, we get $X = X_0 + \nabla g$ is a Smale adapted pseudo-gradient field. Moreover, for every critical point a of f_0 , there is a unique trajectory from $(a, 0)$ to some $(c, 1)$ where $\text{Ind}_{f_0}(a) = \text{Ind}_{f_0}(c)$. This $(c, 1)$ is in fact $(a, 1)$ and the trajectory is the straight line $\ell_a : [-1/3, 4/3] \rightarrow V \times [-1/3, 4/3]$ $\ell_a(s) = (a, s)$. Thus, $\Phi^I(a) = a$ so $\Phi^I = id$.

3 Third Step

Suppose we have the three interpolating functions F, G, H from f_0 to f_1 , f_1 to f_2 , and f_0 to f_2 , resp. We now construct an interpolation of these interpolations $K: V \times [-1/3, 4/3]^2 \to \mathbb{R}$ satisfying

We continue to use a Morse function $g : \mathbb{R} \to \mathbb{R}$ as above and require that

$$
\frac{\partial K}{\partial s}(x, s, t) + g'(s) < 0 \text{ for all } (x, s, t) \in V \times (0, 1) \times [1/3, 4/3]
$$

and

$$
\frac{\partial K}{\partial s}(x, s, t) + g'(t) < 0 \text{ for all } (x, s, t) \in V \times [1/3, 4/3] \times (0, 1)
$$

Lastly, let $\widetilde{K}(x, s, t) = K(x, s, t) + g(s) + g(t)$. The critical points of \widetilde{K} are in the shaded regions of the figure above, where in those regions, \widetilde{K} has the form $f_i(x) + g(s) + g(t)$, $i = 0, 1, 2$. Moreover, the critical points of \widetilde{K} are exactly the union of Crit(f_0) \times {0}, Crit(f_1) \times $\{1\} \times \{0\}$, Crit $(f_2) \times \{0\} \times \{1\}$, and Crit $(f_2) \times \{1\} \times \{1\}$. The indices are as follows:

- If $a \in \text{Crit}(f_0)$, then $\text{Ind}_{\tilde{K}}((a, 0, 0)) = \text{Ind}_{f_0}(a) + 2$.
- If $b \in \text{Crit}(f_1)$, then $\text{Ind}_{\tilde{K}}((b, 1, 0)) = \text{Ind}_{f_1}(b) + 1$.
- If $c \in \text{Crit}(f_2)$, then $\text{Ind}_{\tilde{K}}((c, 0, 1)) = \text{Ind}_{f_2}(c) + 1$ and $\text{Ind}_{\tilde{K}}((c, 1, 1)) = \text{Ind}_{f_2}(c)$.

Let X be the pseudo-gradient adapted to F and Y the one for G . Let Z be a pseudo-gradient for $H(x,t) + g(t): V \times [-1/3, 4/3] \to \mathbb{R}$. Using a partition of unity, construct a vector field W adapted to \tilde{K} such that:

- For $s \in [-1/3, 1/3]$, $W(x, s, t) = Z(x, t) + \nabla q(s)$.
- For $s \in [2/3, 4/3]$, $W(x, s, t) = Y(x, t) + \nabla q(s)$.
- For $t \in [-1/3, 1/3]$, $W(x, s, t) = X(x, s) + \nabla q(t)$.
- For $t \in [2/3, 4/3]$, $W(x, s, t) = X_2 + \nabla q(s) + \nabla q(t)$.

We then perturb W to some Smale W, taking care to ensure that outside of $V \times [1/3, 2/3]^2$, the trajectories of W connecting critical points of consecutive indices are in 1-1 correspondence with those of W . We have

$$
C_{k+1}(K) = C_{k-1}(f_0) \oplus C_k(f_1) \oplus C_k(f_2) \oplus C_{k+1}(f_2).
$$

Then $(C_*(K), \partial_{\widetilde{W}})$ is a Morse chain complex for on $V \times [-1/3, 4/3]^2$. We may represent the differential in the following way (letting $S: C_{k-1}(f_0) \to C_k(f_2)$ be some map):

$$
\partial_{\widetilde{W}} = \begin{pmatrix} \partial_{X_0} & 0 & 0 & 0 \\ \Phi^F & \partial_{X_1} & 0 & 0 \\ \Phi^H & 0 & \partial_{X_2} & 0 \\ S & \Phi^G & \mathrm{id} & \partial_{X_2} \end{pmatrix}
$$

The fact that $\partial^2_{\widetilde{W}} = 0$ means that $S \circ \partial_{X_0} + \Phi^G \circ \Phi^F + \Phi^H + \partial_{X_2} \circ S = 0$ or, because of \mathbb{Z}_2 coefficients, $\Phi^G \circ \Phi^F - \Phi^H = S \circ \partial_{X_0} + \partial_{X_2} \circ S$. This means that S is a chain-homotopy and thus $\Phi^G \circ \Phi^F$ and Φ^H induce the same morphism on homology. Then, when $(f_0, X_0) = (f_2, X_2)$, this means $H = I$ and $\Phi^G \circ \Phi^F = id$. Hence, we have isomorphims for Morse homology.