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The Hamiltonian Equation

Let LM be the space of contractible loops in symplectic manifold (M, w). That is, the
space of contractible maps = : S* — M. If H : M x R — R is a time-dependent
Hamiltonian, we are able to define Hamiltonian vector fields X; as follows: ¢x,w = —dH;.
This defines for us a family of isotopies, ¢;. The Hamiltonian system is an ODE:

i(t) = Xi(2(1))

The Action Functional

The action functional is defined on £LM. Let z : D> — M be an extension of the
contractible loop z : ST — M.
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] T'w + /1 Hy(x(t)) dt.

The differential of the action functional. A tangent vector Y (¢) to a loop x is a vector
field along the loop. i.e. a section of the pullback bundle x*T' M.

(dAR).(Y) = /0 w(z(t) — Xe(x(t)), Y (1)) dt.

Note that because w is nondegenerate, the differential equals 0 precisely when &(t) =
Xi(z(t)); i.e. x is a solution to the Hamiltonian equation.

The Floer Equation

Let us define a metric on M by fixing an almost complex structure J compatible with
w. Then g(-,-) = w(-,J-) extends to a metric on LM by integration. A trajectory of
VApy is amap v : R x S — M satisfying the Floer equation, a PDE. It is convenient,
for example, to consider an equation in terms of an operator A acting on all functions
f: M — R and look for solutions f such that Af = 0.
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We care about, in particular, solutions of the Floer equation with finite energy. Energy

is defined as follows: .
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The linearization of a differential equation along a solution u means that we consider first
the operator and then take the differential at a solution u. In our case, linearizing the
Floer map along a solution (having chosen some trivializations on «*T'M) u yields:
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S(s,t) is a linear operator which tends to symmetric operators as s — fo0o0. Therefore,

The adjoint of L, is denoted L! and defined in the usual way: (L,Y,Z) = (Y,L:Z).
Explicitly, we have a formula:
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This is easy to see. We should consider this in the setting of distributions since we’re
dealing with Sobolev spaces. Then
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With Jg%, the partial derivative introduces a minus sign but so does Jy since J§ = —Jp.

The Morse Equation

Let f: M — R be a Morse function. A trajectory u : R — M of V f satisfies

du
i Vf(u(s)) =0.

In the case of an autonomous C? small Hamiltonian H, we can show that its periodic
orbits are constant and that H is Morse. Then, with a fixed almost complex structure J,
we have a way to define VH = —J Xp. Our equation becomes:

o JXp(u(s)) =0.

The linearization of this ODE along a solution u is
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L)Y = —
ds

+ A(s)Y

where A(s) — Hess, f as s =& —oo and A(s) — Hess, f as s = +o0.

The adjoint of L, is L}, defined by L;Z = —4£ 4+ A'Z.

Some Definitions

e A solution u to the Floer equation is “somewhere injective” if for any fixed ¢y, whenever

u(s,to) = u(s1,t), s = s1. So, it is perfectly possible for u(so, tg) = u(s1,t1) with ¢y # t;.
It is a result that any solution u that is not simply an orbit z(¢) is somewhere injective.



