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The Hamiltonian Equation

• Let LM be the space of contractible loops in symplectic manifold (M,ω). That is, the
space of contractible maps x : S1 → M . If H : M × R → R is a time-dependent
Hamiltonian, we are able to define Hamiltonian vector fields Xt as follows: ιXtω = −dHt.
This defines for us a family of isotopies, ϕt. The Hamiltonian system is an ODE:

ẋ(t) = Xt(x(t))

The Action Functional

• The action functional is defined on LM . Let x̄ : D2 → M be an extension of the
contractible loop x : S1 →M .

AH : LM → R; AH(x) = −
∫
D2

x̄∗ω +

∫ 1

0

Ht(x(t)) dt.

• The differential of the action functional. A tangent vector Y (t) to a loop x is a vector
field along the loop. i.e. a section of the pullback bundle x∗TM .

(dAH)x(Y ) =

∫ 1

0

ω(ẋ(t)−Xt(x(t)), Y (t)) dt.

Note that because ω is nondegenerate, the differential equals 0 precisely when ẋ(t) =
Xt(x(t)); i.e. x is a solution to the Hamiltonian equation.

The Floer Equation

• Let us define a metric on M by fixing an almost complex structure J compatible with
ω. Then g(·, ·) = ω(·, J ·) extends to a metric on LM by integration. A trajectory of
∇AH is a map u : R × S1 → M satisfying the Floer equation, a PDE. It is convenient,
for example, to consider an equation in terms of an operator ∆ acting on all functions
f : M → R and look for solutions f such that ∆f = 0.

Fu =
∂u

∂s
+ J(u)

∂u

∂t
+∇uHt = 0

• We care about, in particular, solutions of the Floer equation with finite energy. Energy
is defined as follows:

E(u) =

∫ ∞
−∞

∫ 1

0

∥∥∥∥∂u∂s
∥∥∥∥2 dt ds.
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• The linearization of a differential equation along a solution u means that we consider first
the operator and then take the differential at a solution u. In our case, linearizing the
Floer map along a solution (having chosen some trivializations on u∗TM) u yields:

LuY := (dF)uY =
∂Y

∂s
+ J0

∂Y

∂t
+ S · Y.

S(s, t) is a linear operator which tends to symmetric operators as s → ±∞. Therefore,
lims→±∞ ∂S/∂s = 0.

• The adjoint of Lu is denoted L∗u and defined in the usual way: 〈LuY, Z〉 = 〈Y, L∗uZ〉.
Explicitly, we have a formula:

L∗uZ = −∂Z
∂s

+ J0
∂Z

∂t
+ StZ.

This is easy to see. We should consider this in the setting of distributions since we’re
dealing with Sobolev spaces. Then〈

∂Y

∂s
, Z

〉
= −

〈
Y,
∂Z

∂s

〉
.

With J0
∂
∂t

, the partial derivative introduces a minus sign but so does J0 since J t
0 = −J0.

The Morse Equation

• Let f : M → R be a Morse function. A trajectory u : R→M of ∇f satisfies

du

ds
+∇f(u(s)) = 0.

In the case of an autonomous C2 small Hamiltonian H, we can show that its periodic
orbits are constant and that H is Morse. Then, with a fixed almost complex structure J ,
we have a way to define ∇H = −JXH . Our equation becomes:

du

ds
− JXH(u(s)) = 0.

• The linearization of this ODE along a solution u is

LuY =
dY

ds
+ A(s)Y

where A(s)→ Hessxf as s→ −∞ and A(s)→ Hessyf as s→ +∞.

• The adjoint of Lu is L∗u defined by L∗uZ = −dZ
ds

+ AtZ.

Some Definitions

• A solution u to the Floer equation is “somewhere injective” if for any fixed t0, whenever
u(s, t0) = u(s1, t0), s = s1. So, it is perfectly possible for u(s0, t0) = u(s1, t1) with t0 6= t1.
It is a result that any solution u that is not simply an orbit x(t) is somewhere injective.
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