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1 Complex Analysis

Definition 1.1. A harmonic function is a twice continuously differentiable function f :
U — R (where U is an open subset of R™) which satisfies Laplace’s equation, i.e.
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everywhere on U. This is usually written as V2 f = 0.
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Some basic facts about harmonic functions:
e The real and imaginary part of holomorphic functions are harmonic.

e Maximum Principal: If K is a nonempty compact subset of U, then f restricted to K
attains its maximum and minimum on the boundary of K.

e Mean Value Principal: If 2 is open and B(z,7) C Q C C, then the value f(z) of a
harmonic function f : Q — C is given by the average value of f on the surface of the ball;
this average value is also equal to the average value of f in the interior of the ball. So
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Definition 1.2. A Mobius transformation of C is a rational function of the form
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with a,b,c,d € C satisfying ad — bc # 0.

Geometrically, a Mobius transformation can be obtained by stereographically projecting
from the plane to S2, rotating and moving S? to a new location and orientation in space, and
then performing stereographic projection from the new position to the plane.

Mobius transformations are conformal; i.e. preserve angles. They take lines to circles or
lines and circles to circles or lines. For every circle or line, there is a Mobius transformation
which fixes it.

Theorem 1.3 (Rouché’s Theorem). For any two holomorphic functions f and g inside some
region K with closed contour 0K, if |g(z)| < |f(z)| on OK, then f and f + g have the same
number of zeros inside K, where each zero is counted as many times as its multiplicity.

Note the strict inequality.



Theorem 1.4 (Morera’s Theorem). A continuous, complez-valued function f defined on an
open set D C C that satisfies
]{ f(2)dz=0
v

for every closed piecewise C* curve v in D must be holomorphic on D.

Theorem 1.5 (Liouville’s Theorem). Every bounded entire function must be constant. That
18, every bounded function holomorphic on all of C is constant.

Lemma 1.6 (Schwarz’s Lemma). Let D = {z : |z| < 1} in C and let f : D — D be a
holomorphic map such that f(0) = 0. Then, |f(2)| < |2|Vz € D and |f'(0)| < 1. Moreover, if
|f(2)] = |z| for some non-zero z or |f'(0)| =1, then f(z) = Az for some X\ € C with |A\| = 1.

Note that if |f/(0)] < 1, then it can’t be a rotation since, if f were a rotation, f(z) = Az =
f'A) =A=|f'(2)] = |\ = 1. In this case, |f(2)| < |z].

Theorem 1.7 (The Riemann Mapping Theorem). Let U C C be non-empty, open, and
simply connected. There exists a bijective holomorphic f : U — D whose inverse is also
holomorphic. Here, D is the open unit disk.

2 Real Analysis

Fact: Let A be an n x n matric. Then det e? = 4.
Fact: Within the radius of convergence of f(x) = > f,(z), we may integrate or differentiate
term by term and the sum equals the integral or derivative of f.

Theorem 2.1 (Theorem in Baby Rudin). Suppose { f,} is a sequence of functions, differentiable
on [a,b] (a <b), such that {f,(x¢)} converges for some xy € |a,b]. If {f!} converges uniformly
on [a,b], then {f,} converges uniformly on [a,b], to a function f and f'(x) = lim, o f/(x) for
r € [a,b)].

Theorem 2.2 (The Monotone Convergence Theorem). If {f,} is a sequence in Lt such
that f; < fis1 for all j, and f =lim, e fo(=sup, fn), then [ f =1lim, o [ fo

Lemma 2.3 (Fatou’s Lemma). If {f,} is any sequence in L, then

/ liminf f,, < liminf / fn-

Theorem 2.4 (The Dominated Convergence Theorem). Let {f,} be a sequence in L'
such that

1. f,— f a.e.
2. There exists g € L' N LT such that | f,| < g a.e. for all n.
Then f € L* and [ f =lim, o0 [ fn-

Theorem 2.5 (5.6: The Hahn-Banach Theorem). Let X be a real vector space, p a sublinear
functional on X, M a subspace of X, and f a linear functional on M such that f(x) < p(z) for
all z € M. Then there exists a linear functional F' on X such that F(x) < p(z) for all z € X
and Fly = f.

Theorem 2.6 (5.9: The Baire Category Theorem). Let C' be a complete metric space.
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1. If {U,}* is a sequence of open dense subsets of X, then (> U, is dense in X.

2. X s not a countable union of nowhere dense sets.

Theorem 2.7 (5.10: The Open Mapping Theorem). Let X,Y be Banach spaces. If T €
L(X,Y) is surjective, then T is open.

Theorem 2.8 (5.12: The Closed Graph Theorem). If X,Y are Banach spaces and T :
X =Y is a closed linear map, then T is bounded.

Theorem 2.9 (5.13: The Uniform Boundedness Principle). Suppose that X, Y are normed
vector spaces and A C L(X,Y).

1. If suppe 4 ||Tz|| < 0o for all x in some nonmeager subset of X, then suppeq |1 < 0.

2. If X is a Banach space and suppe 4 [|[Tz|| < oo for all x € X, then suppeq || T < 0.

Theorem 2.10 (5.12: Riesz Representation Theorem). If H is a Hilbert space, then for
every bounded linear functional f € H*, there exists y € H such that f(x) = (x,y) for all
reH.

3 Group Theory

Fact: in S, if g,¢" are of the same permutation type, then there exists an h € S,, such that
hgh™ =¢'.
Other useful facts:

e If G/Z(G) is cyclic, then G is abelian. Also, G/Z(G) = Inn(G).
e Let H be a normal subgroup of G. Then G/Cq(H) = K < Aut(H).

Lemma 3.1. If H, K are subgroups of G and H < Ng(K), then HK is a subgroup and
HK = KH. Moreover, HK =2 H X K.

Lemma 3.2. Let G be a finite group.
o If |G| = pq where p,q are primes, p < q, and ptq— 1, then G = Z,,.
o If |G| = p* where p is prime, then G is abelian by the Class Equation.

Theorem 3.3 (Burnside’s Theorem). If G is a group with order p®q® where p,q are primes,
a,b € ZU{0}, then G is solvable. This immediately implies that every finite non-abelian simple
group has order divisible by at least three distinct primes.

Theorem 3.4 (Feit-Thompson Theorem). If G is a finite group of odd order and is simple,
then G = Z, for some prime p.

Lemma 3.5. Let N be a normal subgroup of G with order n. If
1 s N —— G —2— 7, » 0 is a sequence and ged(n,d) = 1, then G = N X Zy.

Proof. Note that the sequence above is exact iff the sequence splits iff G = N x Z, iff there is
a g such that ¢¢ = 1 and «a(g) generates Z;. So choose any a € G such that a(a) = 1. Then
a(a?) = d = 0. If the sequence is exact, a? € ker @ = Im 7 which means a¢ corresponds to an
element in N. We'll use the notation a? € N. Then let the order |a?| = k; by Lagrange, k | n.
If ged(n, d) = 1, then ged(k, d) = 1. This is because k divides n.

So let g := a*. Then since ged(k,d) = 1, a(g) = k which generates Z,. Also, since the order of
at is k, then (a?)* = (a*)? = g¢ = 1. Thus, the sequence splits so G = N x Zg. O

We may use this lemma in the case when N = Z,, and even more particular, when n, d are
primes.
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Galois Theory

The Galois group of a polynomial p(z) over a field F is the group of automorphisms of K, the
splitting field of p over F' which fix the base field F.

Nota bene: When computing Galois groups, be careful to check whether p is irreducible.
For instance, though z* + 4 has no roots in Q, it equals (22 + 2z + 2)(2* — 22 + 2). Also,
check whether the roots can be represented by each other. This may affect the automorphisms.
For instance, if +«a, £f are roots but = 1/«, then if an automorphism sends « — —a, then

b —

—B.

Here are some facts.

An extension K/F' is Galois iff K is the splitting field of some separable polynomial over
F'; i.e. the polynomial doesn’t have repeated roots.

|Gal(K/F)| = [K : F], i.e. the dimension of the vector space K over F. Also, |Gal(K/F)| <
(deg(p))! (factorial). This is because the “largest” Galois group of a nth degree polynomial
is the symmetric group 5,.

Galois automorphisms only permute the roots of irreducible polynomials. So if p, g are
irreducible polynomials, Gal(pg) = Gal(p) ® Gal(q).

If p is irreducible in F' with « as a root, then |Gal(F(«)/F)| = degp.

Normal subgroups of the Galois group correspond to subfields which are Galois extensions
of F. For example, if p(z) = (2* + 1)(z* — 2) over Q, then there is a normal subgroup
which corresponds to Q[v/2].

From above, an extension K/F is Galois iff K is the splitting field of some separable
polynomial over F. So if FE is an extension F' C F C K and has an element a but F
does not contain all the roots of the minimal polynomial of a over F', then it is not a
splitting field. Thus, it corresponds to a non-normal subgroup. If a Galois group G has
a non-normal subgroup, then G is non-abelian.

The lattice of subfields and the lattice of subgroups is reversed.

F(y/a) is quadratic if a € F and char F # 2. This implies that Gal(F(«)/F) is Zo.

F(\/a,+/B) is biquadratic if a, 3 € F but /a,/B,v/aB ¢ F and char F # 2. This
implies that Gal(F(«)/F) is Zg X Zs.

Here are some Irreducibility Criteria.

Let F be a field and p(z) € F[z]. Then p(x) has a factor of degree one if and only if p(x)

has a root in F'. Thus, polynomials of degree 2 or 3 are reducible iff they have a root in
F.

For quartics, after checking for roots, if there are no roots in the field, check if it’s the
product of two quadratics. If p is irreducible, usually one can see derive a contradiction
by assuming that it is the product of two quadratics.

Rational Root Test: Let p(x) = a,2" + ...+ a1x+ ao with integer coeffcients. If r/s € Q
is in lowest terms and r/s is a root of p, then r | ap and s | a,,.
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Gauss’ Lemma: Let R be a UFD with field of fractions F' and p(z) € Rz]. If p(x)
is reducible in Fz], it is reducible in R[z]. The contrapositive is usually more useful,
particularly with Z[z] and Q][z].

Let I be a proper ideal in the integral domain R and let p(z) be a nonconstant monic
polynomial in R[z]. If p(x) € (R/I)[z] = R[z]/I[z] cannot be factored in (R/I)[z] into
two polynomials of smaller degree, then p(z) is irreducible in R]x].

Eisenstein’s Criterion: Let P be a prime ideal of integral domain R and let f(x) =
2" + ap12" 1 + ... + a1z + ap be a polynomial in R[z|. Suppose that a,_1,...,a1,a9 € P
but ag ¢ P?. Then f(z) is irreducible in R[z]. So in Z[z], if p is prime and divides all the
a; but p? { ag, then f is irreducible.

Topology

Some useful facts:

Fact:

A manifold M is unorientable if and only if M has a orientable double cover.
m: X — X/G, the quotient map, is a covering map iff G is properly discontinuous.

Deck transformations do not fix points. If X is Hausdorff, G is finite, and elements of G
do not fix points, then G is properly discontinuous.

Ifp: X Xisa covering map from the universal cover of X to X, then p is trivially a
regular covering map; i.e. p.(m (X)) is a normal subgroup of m;(X). Then, X = X/G.
In general, if p is regular, this holds.

The antipodal map a : S™ — S™ is orientation preserving if n is odd.

Comps Lemma: If M, N are n-manifolds with M compact and N connected, then if
F : M — N is a submersion or immersion, then F'is a covering map. The proof really
only requires a local homeomorphism but when we have a submersion/immersion and
the dimensions of the spaces equal, then dF), : T,M — Tp) N is max (constant) rank
and invertible for each p € M. Thus, by the Inverse Function Theorem, F' is a local
diffeomorphism.

de Rham Cohomology

The de Rham cohomologies are real vector spaces and are homotopy invariant.
If M is a manifold with dimension n, then H*(M) = 0 when k > n.

Some simple cohomologies:

R, k=0;
H’f(R”):{ ’ K

0, else

R, k=0,n;

0, else

H*(S™) = {
For smooth manifolds: Let M be a smooth n-manifold. H°(M) = R* where k is the

number of connected components of M.

H(M) = {R, M orientable and compact;

0, M unorientable or non-compact

>



Hk(X uy) = Hk(X) &> Hk(Y)
If OM # @ and for all k, H*(M) = H*(M \ OM), then H*(M) = 0.
Kiinneth’s Formula:

HYX xY) = @ (H'(X) @p H(Y)).

i+j=k

Mayer-Vietoris: Suppose M = U UV is a n-manifold. Then we have the following
exact sequence:

0— HUUV)— HU)e H (V)= HUNV) = H(UUV) = H(U)® H'(V) —

— HUNV)— ... HWUV)—= H'U)® H' (V) = H*UNV) = 0.

Sometimes, take advantage of the Coker v = V/Im ~ since Im « = ker « for the next map
a in the sequence.

Example 6.1. Suppose that X = U NV is a smooth connected manifold and U,V are
open connected subsets. Suppose U NV isn’t connected. Then H°(U N'V) = R* where
k > 2 is the number of connected components. Then we have this exact sequence:

0 —— HUUV) -2 HU) & H'(V) —2— HUNV) —» H(UUV)..

which corresponds to 0 yR—23Re&R 25 R 2 YU UV)...

Supppose HY (U UV) = 0. Then 0 v R —3 R> 2 L RF 24 0 s exact.

Suppose k > 2. Since Im 8 = kery = R¥, 3 is surjective. But the dimensions are wrong
so H{UUV) #0. If k = 2, then § is injective so Im a = ker 3 = 0. So kera« = R. But
« must be injective since the sequence is exact. So again, H' (U U V) # 0.

Let S be sequence:
o= HYX) = HU)®e H (V) - H(UNV) = H(X) = ...

Then x(S) := Y i_(—1)*dim V. If S is exact, then x(S) = 0. So if S is the Mayer-
Vietoris sequence, then
x(S) = —dim(H*(U UV)) + dim(H°(U) ® H*(V)) — dim(H(U N V))
+dim(H'(UNV)) —...£ HYUNV).



