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1 Complex Analysis

Definition 1.1. A harmonic function is a twice continuously differentiable function f :
U → R (where U is an open subset of Rn) which satisfies Laplace’s equation, i.e.

∂2f

∂x21
+
∂2f

∂x22
+ · · ·+ ∂2f

∂x2n
= 0

everywhere on U . This is usually written as ∇2f = 0.

Some basic facts about harmonic functions:

• The real and imaginary part of holomorphic functions are harmonic.

• Maximum Principal: If K is a nonempty compact subset of U , then f restricted to K
attains its maximum and minimum on the boundary of K.

• Mean Value Principal: If Ω is open and B(z, r) ⊂ Ω ⊂ C, then the value f(z) of a
harmonic function f : Ω→ C is given by the average value of f on the surface of the ball;
this average value is also equal to the average value of f in the interior of the ball. So

f(z) =
1

πr2

∫
B(z,r)

f(w) dw.

Definition 1.2. A Möbius transformation of C is a rational function of the form

f(z) =
az + b

cz + d

with a, b, c, d ∈ C satisfying ad− bc 6= 0.

Geometrically, a Möbius transformation can be obtained by stereographically projecting
from the plane to S2, rotating and moving S2 to a new location and orientation in space, and
then performing stereographic projection from the new position to the plane.

Möbius transformations are conformal; i.e. preserve angles. They take lines to circles or
lines and circles to circles or lines. For every circle or line, there is a Möbius transformation
which fixes it.

Theorem 1.3 (Rouché’s Theorem). For any two holomorphic functions f and g inside some
region K with closed contour ∂K, if |g(z)| < |f(z)| on ∂K, then f and f + g have the same
number of zeros inside K, where each zero is counted as many times as its multiplicity.

Note the strict inequality.
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Theorem 1.4 (Morera’s Theorem). A continuous, complex-valued function f defined on an
open set D ⊂ C that satisfies ∮

γ

f(z) dz = 0

for every closed piecewise C1 curve γ in D must be holomorphic on D.

Theorem 1.5 (Liouville’s Theorem). Every bounded entire function must be constant. That
is, every bounded function holomorphic on all of C is constant.

Lemma 1.6 (Schwarz’s Lemma). Let D = {z : |z| < 1} in C and let f : D → D be a
holomorphic map such that f(0) = 0. Then, |f(z)| ≤ |z| ∀z ∈ D and |f ′(0)| ≤ 1. Moreover, if
|f(z)| = |z| for some non-zero z or |f ′(0)| = 1, then f(z) = λz for some λ ∈ C with |λ| = 1.

Note that if |f ′(0)| < 1, then it can’t be a rotation since, if f were a rotation, f(z) = λz ⇒
f ′(λ) = λ⇒ |f ′(z)| = |λ| = 1. In this case, |f(z)| < |z|.

Theorem 1.7 (The Riemann Mapping Theorem). Let U ( C be non-empty, open, and
simply connected. There exists a bijective holomorphic f : U → D whose inverse is also
holomorphic. Here, D is the open unit disk.

2 Real Analysis

Fact: Let A be an n× n matric. Then det eA = etrA.
Fact: Within the radius of convergence of f(x) =

∑∞ fn(x), we may integrate or differentiate
term by term and the sum equals the integral or derivative of f .

Theorem 2.1 (Theorem in Baby Rudin). Suppose {fn} is a sequence of functions, differentiable
on [a, b] (a < b), such that {fn(x0)} converges for some x0 ∈ [a, b]. If {f ′n} converges uniformly
on [a, b], then {fn} converges uniformly on [a, b], to a function f and f ′(x) = limn→∞ f

′
n(x) for

x ∈ [a, b].

Theorem 2.2 (The Monotone Convergence Theorem). If {fn} is a sequence in L+ such
that fj ≤ fj+1 for all j, and f = limn→∞ fn(= supn fn), then

∫
f = limn→∞

∫
fn.

Lemma 2.3 (Fatou’s Lemma). If {fn} is any sequence in L+, then∫
lim inf fn ≤ lim inf

∫
fn.

Theorem 2.4 (The Dominated Convergence Theorem). Let {fn} be a sequence in L1

such that

1. fn → f a.e.

2. There exists g ∈ L1 ∩ L+ such that |fn| ≤ g a.e. for all n.

Then f ∈ L1 and
∫
f = limn→∞

∫
fn.

Theorem 2.5 (5.6: The Hahn-Banach Theorem). Let X be a real vector space, p a sublinear
functional on X, M a subspace of X, and f a linear functional on M such that f(x) ≤ p(x) for
all x ∈ M . Then there exists a linear functional F on X such that F (x) ≤ p(x) for all x ∈ X
and F |M = f .

Theorem 2.6 (5.9: The Baire Category Theorem). Let C be a complete metric space.
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1. If {Un}∞ is a sequence of open dense subsets of X, then
⋂∞ Un is dense in X.

2. X is not a countable union of nowhere dense sets.

Theorem 2.7 (5.10: The Open Mapping Theorem). Let X, Y be Banach spaces. If T ∈
L(X, Y ) is surjective, then T is open.

Theorem 2.8 (5.12: The Closed Graph Theorem). If X, Y are Banach spaces and T :
X → Y is a closed linear map, then T is bounded.

Theorem 2.9 (5.13: The Uniform Boundedness Principle). Suppose that X, Y are normed
vector spaces and A ⊂ L(X, Y ).

1. If supT∈A ‖Tx‖ <∞ for all x in some nonmeager subset of X, then supT∈A ‖T‖ <∞.

2. If X is a Banach space and supT∈A ‖Tx‖ <∞ for all x ∈ X, then supT∈A ‖T‖ <∞.

Theorem 2.10 (5.12: Riesz Representation Theorem). If H is a Hilbert space, then for
every bounded linear functional f ∈ H∗, there exists y ∈ H such that f(x) = 〈x, y〉 for all
x ∈ H.

3 Group Theory

Fact: in Sn, if g, g′ are of the same permutation type, then there exists an h ∈ Sn such that
hgh−1 = g′.

Other useful facts:

• If G/Z(G) is cyclic, then G is abelian. Also, G/Z(G) ∼= Inn(G).

• Let H be a normal subgroup of G. Then G/CG(H) ∼= K 6 Aut(H).

Lemma 3.1. If H,K are subgroups of G and H 6 NG(K), then HK is a subgroup and
HK = KH. Moreover, HK ∼= H ×K.

Lemma 3.2. Let G be a finite group.

• If |G| = pq where p, q are primes, p < q, and p - q − 1, then G ∼= Zpq.

• If |G| = p2 where p is prime, then G is abelian by the Class Equation.

Theorem 3.3 (Burnside’s Theorem). If G is a group with order paqb where p, q are primes,
a, b ∈ Z∪{0}, then G is solvable. This immediately implies that every finite non-abelian simple
group has order divisible by at least three distinct primes.

Theorem 3.4 (Feit-Thompson Theorem). If G is a finite group of odd order and is simple,
then G = Zp for some prime p.

Lemma 3.5. Let N be a normal subgroup of G with order n. If

1 N G Zd 0
γ α is a sequence and gcd(n, d) = 1, then G ∼= N o Zd.

Proof. Note that the sequence above is exact iff the sequence splits iff G ∼= N o Zd iff there is
a g such that gd = 1 and α(g) generates Zd. So choose any a ∈ G such that α(a) = 1. Then
α(ad) = d = 0. If the sequence is exact, ad ∈ kerα = Im γ which means ad corresponds to an
element in N . We’ll use the notation ad ∈ N . Then let the order |ad| = k; by Lagrange, k | n.
If gcd(n, d) = 1, then gcd(k, d) = 1. This is because k divides n.
So let g := ak. Then since gcd(k, d) = 1, α(g) = k which generates Zd. Also, since the order of
ad is k, then (ad)k = (ak)d = gd = 1. Thus, the sequence splits so G ∼= N o Zd.

We may use this lemma in the case when N = Zn and even more particular, when n, d are
primes.
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4 Galois Theory

The Galois group of a polynomial p(x) over a field F is the group of automorphisms of K, the
splitting field of p over F which fix the base field F .

Nota bene: When computing Galois groups, be careful to check whether p is irreducible.
For instance, though x4 + 4 has no roots in Q, it equals (x2 + 2x + 2)(x2 − 2x + 2). Also,
check whether the roots can be represented by each other. This may affect the automorphisms.
For instance, if ±α,±β are roots but β = 1/α, then if an automorphism sends α 7→ −α, then
β 7→ −β.

Here are some facts.

• An extension K/F is Galois iff K is the splitting field of some separable polynomial over
F ; i.e. the polynomial doesn’t have repeated roots.

• |Gal(K/F )| = [K : F ], i.e. the dimension of the vector spaceK over F . Also, |Gal(K/F )| ≤
(deg(p))! (factorial). This is because the “largest” Galois group of a nth degree polynomial
is the symmetric group Sn.

• Galois automorphisms only permute the roots of irreducible polynomials. So if p, q are
irreducible polynomials, Gal(pq) = Gal(p)⊕Gal(q).

• If p is irreducible in F with α as a root, then |Gal(F (α)/F )| = deg p.

• Normal subgroups of the Galois group correspond to subfields which are Galois extensions
of F . For example, if p(x) = (x3 + 1)(x2 − 2) over Q, then there is a normal subgroup
which corresponds to Q[

√
2].

• From above, an extension K/F is Galois iff K is the splitting field of some separable
polynomial over F . So if E is an extension F ⊂ E ⊂ K and has an element α but E
does not contain all the roots of the minimal polynomial of α over F , then it is not a
splitting field. Thus, it corresponds to a non-normal subgroup. If a Galois group G has
a non-normal subgroup, then G is non-abelian.

• The lattice of subfields and the lattice of subgroups is reversed.

• F (
√
α) is quadratic if α ∈ F and char F 6= 2. This implies that Gal(F (α)/F ) is Z2.

• F (
√
α,
√
β) is biquadratic if α, β ∈ F but

√
α,
√
β,
√
αβ /∈ F and char F 6= 2. This

implies that Gal(F (α)/F ) is Z2 × Z2.

Here are some Irreducibility Criteria.

• Let F be a field and p(x) ∈ F [x]. Then p(x) has a factor of degree one if and only if p(x)
has a root in F . Thus, polynomials of degree 2 or 3 are reducible iff they have a root in
F .

• For quartics, after checking for roots, if there are no roots in the field, check if it’s the
product of two quadratics. If p is irreducible, usually one can see derive a contradiction
by assuming that it is the product of two quadratics.

• Rational Root Test: Let p(x) = anx
n+ ...+a1x+a0 with integer coeffcients. If r/s ∈ Q

is in lowest terms and r/s is a root of p, then r | a0 and s | an.
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• Gauss’ Lemma: Let R be a UFD with field of fractions F and p(x) ∈ R[x]. If p(x)
is reducible in F [x], it is reducible in R[x]. The contrapositive is usually more useful,
particularly with Z[x] and Q[x].

• Let I be a proper ideal in the integral domain R and let p(x) be a nonconstant monic
polynomial in R[x]. If p(x) ∈ (R/I)[x] ∼= R[x]/I[x] cannot be factored in (R/I)[x] into
two polynomials of smaller degree, then p(x) is irreducible in R[x].

• Eisenstein’s Criterion: Let P be a prime ideal of integral domain R and let f(x) =
xn + an−1x

n−1 + ...+ a1x+ a0 be a polynomial in R[x]. Suppose that an−1, ..., a1, a0 ∈ P
but a0 /∈ P 2. Then f(x) is irreducible in R[x]. So in Z[x], if p is prime and divides all the
ai but p2 - a0, then f is irreducible.

5 Topology

Some useful facts:

• A manifold M is unorientable if and only if M has a orientable double cover.

• π : X → X/G, the quotient map, is a covering map iff G is properly discontinuous.

• Deck transformations do not fix points. If X is Hausdorff, G is finite, and elements of G
do not fix points, then G is properly discontinuous.

• If p : X̃ → X is a covering map from the universal cover of X to X, then p is trivially a
regular covering map; i.e. p∗(π1(X̃)) is a normal subgroup of π1(X). Then, X ∼= X̃/G.
In general, if p is regular, this holds.

• The antipodal map a : Sn → Sn is orientation preserving if n is odd.

• Comps Lemma: If M,N are n-manifolds with M compact and N connected, then if
F : M → N is a submersion or immersion, then F is a covering map. The proof really
only requires a local homeomorphism but when we have a submersion/immersion and
the dimensions of the spaces equal, then dFp : TpM → TF (p)N is max (constant) rank
and invertible for each p ∈ M . Thus, by the Inverse Function Theorem, F is a local
diffeomorphism.

6 de Rham Cohomology

Fact: The de Rham cohomologies are real vector spaces and are homotopy invariant.

• If M is a manifold with dimension n, then Hk(M) = 0 when k > n.

• Some simple cohomologies:

Hk(Rn) =

{
R, k = 0;

0, else
, Hk(Sn) =

{
R, k = 0, n;

0, else

• For smooth manifolds: Let M be a smooth n-manifold. H0(M) = Rk where k is the
number of connected components of M .

Hn(M) =

{
R, M orientable and compact;

0, M unorientable or non-compact
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• Hk(X t Y ) = Hk(X)⊕Hk(Y ).

• If ∂M 6= ∅ and for all k, Hk(M) = Hk(M \ ∂M), then Hn(M) = 0.

• Künneth’s Formula:

Hk(X × Y ) =
⊕
i+j=k

(H i(X)⊗R H
j(Y )).

• Mayer-Vietoris: Suppose M = U ∪ V is a n-manifold. Then we have the following
exact sequence:

0→ H0(U ∪ V )→ H0(U)⊕H0(V )→ H0(U ∩ V )→ H1(U ∪ V )→ H1(U)⊕H1(V )→

→ H1(U ∩ V )→ ...→ Hn(U ∪ V )→ Hn(U)⊕Hn(V )→ Hn(U ∩ V )→ 0.

Sometimes, take advantage of the Coker γ = V/Im γ since Im γ = kerα for the next map
α in the sequence.

Example 6.1. Suppose that X = U ∩ V is a smooth connected manifold and U, V are
open connected subsets. Suppose U ∩ V isn’t connected. Then H0(U ∩ V ) = Rk where
k ≥ 2 is the number of connected components. Then we have this exact sequence:

0 H0(U ∪ V ) H0(U)⊕H0(V ) H0(U ∩ V ) H1(U ∪ V )...α β γ

which corresponds to 0 R R⊕ R Rk H1(U ∪ V )...α β γ

Supppose H1(U ∪ V ) = 0. Then 0 R R2 Rk 0α β γ
is exact.

Suppose k > 2. Since Im β = ker γ = Rk, β is surjective. But the dimensions are wrong
so H1(U ∪ V ) 6= 0. If k = 2, then β is injective so Im α = ker β = 0. So kerα = R. But
α must be injective since the sequence is exact. So again, H1(U ∪ V ) 6= 0.

• Let S be sequence:

...→ H0(X)→ H0(U)⊕H0(V )→ H0(U ∩ V )→ H1(X)→ ...

Then χ(S) :=
∑n

k=1(−1)k dimVk. If S is exact, then χ(S) = 0. So if S is the Mayer-
Vietoris sequence, then

χ(S) = − dim(H0(U ∪ V )) + dim(H0(U)⊕H0(V ))− dim(H0(U ∩ V ))

+ dim(H1(U ∩ V ))− ...±Hn(U ∩ V ).
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