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Let J0 be the standard almost complex structure on R2n. Denote Sp(2n) = {A ∈ GL(n,R) :
AtJ0A = J0} as the group of symplectic 2n × 2n matrices. Conley and Zehnder introduced a
way to assign an index for paths of symplectic matrices. Consider a path Ψ : [0, 1] → Sp(2n)
such that Ψ(0) = id and det(id−Ψ(1)) 6= 0.

Let Sp∗(2n) be symplectic matrices without 1 as an eigenvalue. This set is open and
dense in Sp(2n) and has two components; its complement is called the Maslov cycle which
forms a codimension 1 algebraic variety with natural co-orientation defined by the equation
det(id−A) = 0. Thus, we may split Sp∗(2n) naturally into a “positive” and “negative” part.

Now, consider ρ, a continuous extension of det : U(n) = Sp(2n) ∩ O(2n) → S1. ρ is not a
group morphism but it can be chosen to be multiplicative with respect to direct sums, invariant
under similarity, and taking the value ±1 for symplectic matrices with no eigenvalues on S1.
These properties uniquely determine ρ.

Now let SP (2n) be the space of paths Ψ : [0, 1] → Sp(2n) with Ψ(0) = id and Ψ(1) ∈
Sp∗(2n). Any such path admits an extension Ψ : [0, 2] → Sp(2n), unique up to homotopy,
such that Ψ(s) ∈ Sp∗(2n) for s ≥ 1 and Ψ(2) is one of the following matrices: W+ = − id
or W− = diag(2,−1, ...,−1, 1/2,−1, ...,−1). Since ρ(W±) = ±1, it follows that ρ2(W±) = +1
and so ρ2 ◦ Ψ : [0, 2] → S1 is a loop. The Conley-Zehnder index of Ψ is defined as the
degree: µCZ(Ψ) = deg ρ2 ◦Ψ. This counts the number of counterclockwise half turns around
S1. This is almost the Maslov index that Audin and Damian define in their book but with
opposite sign; Audin and damian count clockwise half turns.

So how do we assign an index to a periodic orbit x : S1 → (M,ω)? Since we’re looking at
contractible loops, we can extend x to x̄ : D2 → M ; it is a result that over D2, all symplectic
bundles can be trivialized and the trivializations are all homotopic. This means we can choose
a symplectic trivialization {Zi}2n of x̄∗TM and consider it restricted to x.

The assumption that 〈c1, π2(M)〉 = 0 means that letting c1 = c1(M), for all smooth maps
f : S2 →M , ∫

S2

f ∗c1 = 0.

This ensures that our choice of extension x̄ does not matter in the end. Suppose u and v are
two extensions of x; we glue them to form f . Then,

0 =

∫
S2

f ∗c1 =

∫
D2

u∗c1 −
∫
D2

v∗c1.

Another view of this is via the clutching construction; gluing two capping discs along an
S1 to form an CP 1 = S2 means we need a gluing map on S1. This is asking about transition
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(gluing) maps on the two charts of CP 1; the transition map are classified by π1Sp(2n) =
π1U(n) = Z. Let f : S2 → M be a map constructed by gluing two extensions of x together.
Fixing a basepoint, f is determined by some gluing map g ∈ π1Sp(2n) and [f ] ∈ π2M . If
π2M = 0, we see immediately that [f ] is contractible and the two disks are homotopic (can
slide through B3) and so we’ll obtain homotopic paths in Sp(2n).
Question: Why should we expect c1 to be involved? Since Sp(2n) deformation retracts to
U(n), we know that Z = π1Sp(2n) = π2BSp(2n). Since Sp(2n) is connected, π1BSp(2n) = 0.
By Hurewicz’s theorem, c1 ∈ H2(BSp(2n),Z) = π2BSp(2n) = Z. Our assumption is that
0 = c1(f ∗TM) ∈ H2(S2;Z) = Z. This means that our gluing map [g] = 0 ∈ π1Sp(2n). In
this case, the trivializations can slide from one disk to the other through B3; i.e. are homotopic.

Now, let Ψ : [0, 1] → Sp(2n) be the path sending t 7→ A(t) where A(t) is the matrix for
(dϕt)x0 in the trivialization Zi. Because x is nondegenerate, Ψ(1) does not have eigenvalue 1.
We can now apply the above concepts to define the Maslov index for x.

This index has the following properties. It is uniquely determined by the homotopy, loop, and
signature properties.

1. (Naturality) For any path Φ : [0, 1]→ Sp(2n), µCZ(ΦΨΦ−1) = µCZ(Ψ).

2. (Homotopy) The index is constant on the components of SP (2n).

3. (Zero) If Ψ(s) has no eigenvalue on the unit circle for s > 0, then µCZ(Ψ) = 0.

4. (Product) If n′ + n′′ = n, identify Sp(2n′)⊕ Sp(2n′′) with a subgroup of Sp(2n) in the
obvious way. Then µCZ(Ψ′ ⊕Ψ′′) = µCZ(Ψ′) + µCZ(Ψ′′).

5. (Loop) If Φ : [0, 1] → Sp(2n,R) is a loop with Φ(0) = Φ(1) = id, then µCZ(ΦΨ) =
µCZ(Ψ) + 2µ(Φ).

6. (Signature) If S is a nondegenerate symmetric matrix with ‖S‖ < 2π and Ψ(t) =
exp(tJ0S), then µCZ(Ψ) = 1

2
σ(S) where σ(S) is the signature (# positive eigenvalues −

# negative eigenvalues).

7. (Determinant) (−1)n−µCZ(Ψ) = sign det(id−Ψ(1)).

8. (Inverse) µCZ(Ψ−1) = µCZ(Ψt) = −µCZ(Ψ).

Observe that if S is a nondegenerate symmetric matrix with ‖S‖ < 2π and we let Ψ(t) =
exp(tJ0S), then we can express (6) in a different way. Let k = # of negative eigenvalues
of S. Then, being nondegenerate, S has 2n − k positive eigenvalues. (6) tells us µCZ(Ψ) =
1
2
(2n−k−k) = n−k. This is opposite to what Audin and Damian have which is µ(Ψ) = k−n.

Similarly, in Audin and Damian, (7) is given as (−1)µ(Ψ)−n = sign det(id−Ψ(1)).
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